Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35 Affiliated to Manonmaniam Sundaranar University, Tirunelveli # **DEPARTMENT OF BOTANY** TEACHING PLAN (PG) ODD SEMESTER 2025-2026 #### Vision To impart knowledge with professional zeal and devotion for plant science. #### Mission Providing student – centered and profession- oriented higher education that bestows academic environment to create intellectuals with scientific temperament, in the context of global issues and environmental challenges. #### **Graduate Attributes** Graduates of our College develop the following attributes during the course of their studies. # > Creative thinking: Equipping students with hands-on-training through skill based courses and promote startup. ## > Personality development: Coping with increasing pace and change of modern life through value education, awareness on human rights, gender issues and giving counselling for the needful. # **Environmental consciousness and social understanding:** Reflecting upon green initiatives and understanding the responsibility to contribute to the society; promoting social and cultural diversity through student training and service learning programmes. # **Communicative competence:** Offering effective communication skills in both professional and social contexts through bridge courses and activities of clubs and committees. #### > Aesthetic skills: Engaging mind, body and emotions for transformation through fine arts, meditation and exercise; enriching skills through certificate courses offered by Holy Cross Academy. ## > Research and knowledge enrichment: Getting in-depth knowledge in the specific area of study through relevant core papers; ability to create new understanding through the process of critical analysis and problem solving. #### > Professional ethics: Valuing honesty, fairness, respect, compassion and professional ethics among students. The students of social work adhere to the *National Association of Social Workers Code of Ethics* # > Student engagement in the learning process: Obtaining extensive and varied opportunities to utilize and build upon the theoretical and empirical knowledge gained through workshops, seminars, conferences, industrial visits and summer internship programmes. ## **Employability:** Enhancing students in their professional life through Entrepreneur development, Placement & Career guidance Cell. ## **Women empowerment and leadership:** Developing the capacity of self-management, team work, leadership and decision making through gender sensitization programmes. # **Programme Educational Objectives (PEOs)** | | Upon completion of M. Sc. Botany Programme, the | Mapping with | |-------------|--|--------------| | PEOs | graduates will be able to: | Mission | | PEO1 | apply scientific and computational technology to solve | M1, M2 | | | social and ecological issues and pursue research. | | | PEO2 | continue to learn and advance their career in industry | M4 & M5 | | | both in private and public sectors. | | | PEO3 | develop leadership, teamwork, and professional abilities | M2, M5 & M6 | | | to become a more cultured and civilized personand to | | | | tackle the challenges in serving the country. | | Programme Outcomes (POs) | POs | Upon completion of M.Sc. Botany Programme, the graduates will be able to: | Mapping with PEOs | |-----|---|---------------------| | PO1 | apply their knowledge, analyze complex problems, think independently, formulate and perform quality research. | PEO1 & PEO2 | | PO2 | carry out internship programmes and research projects to develop scientific and innovative ideas through effective communication. | PEO1, PEO2
&PEO3 | | PO3 | develop a multidisciplinary perspective and contribute to the knowledge capital of the globe. | PEO2 | | PO4 | develop innovative initiatives to sustain ecofriendly environment | PEO1, PEO2 | | PO5 | through active career, team work and using managerial skills guide people to the right destination in a smooth and efficient way. | PEO2 | | PO6 | employ appropriate analysis tools and ICT in a range of learning scenarios, demonstrating the capacity to find, assess, and apply relevant information sources. | PEO1, PEO2
&PEO3 | | PO7 | learn independently for lifelong executing professional, social and ethical responsibilities leading to sustainable development. | PEO3 | Programme Specific Outcomes (PSOs) | | Program Specific Outcomes (PSO) | | | | | | | | | |-----------|--|--|--|--|--|--|--|--|--| | On succes | On successful completion of the M.Sc. Botany programme, the students are expected to | | | | | | | | | | PSO1 | familiarize with the fundamental, advanced and emerging concepts in Botany. | | | | | | | | | | PSO2 | understand the role of plants and their interactions with other organisms in | | | | | | | | | | 1502 | variousecosystems. | | | | | | | | | | PSO3 | identify the potency of plant resources in contemporary research and visualize | | | | | | | | | | 1 503 | futurethrust areas in Botany. | | | | | | | | | | PSO4 | design scientific experiments independently and to generate useful information | | | | | | | | | | r5U4 | toaddress various issues in Botany. | | | | | | | | | | PSO5 | acquire basic knowledge on principles and applications of laboratory instruments and adequate skills to handle them. | |-------|--| | PSO6 | choose and apply appropriate tools, techniques, resources, etc. to perform variousexperiments in Botany. | | PSO7 | carryout scientific experiments independently or in collaboration with inter-
disciplinary or multidisciplinary approaches. | | PSO8 | disseminate knowledge on conservation of biodiversity and protection of environment. | | PSO9 | awareness on the sustainable utilization of plant/microbial resources following thebioethical norms. | | PSO10 | demonstrate proficiency in communicating with various stakeholders like students, teachers, scientists and society. | Class : I M.Sc. Botany Title of the Course: Core I: PLANT DIVERSITY – I: ALGAE, FUNGI, LICHENS AND **BRYOPHYTES** Semester : I Course Code : BP231CC1 | Course Code | т | Т | D | Credits | Inst. Hours | Total | Marks | | | |-------------|---|---|---|---------|-------------|-------|-------|----------|-------| | Course Code | L | | 1 | | | Hours | CIA | External | Total | | BP231CC1 | 5 | 2 | - | 5 | 7 | 105 | 25 | 75 | 100 | # **Objectives** - 1. To learn about the classification, distinguishing traits, geographic distribution, and reproductive cycle of algae, fungi, lichens, and bryophytes. - 2. To gain knowledge about the ecological and economic importance of algae, fungi, lichens and bryophytes. #### **Course outcomes** | On | completion of this course, the students will be able to: | Cognitive level | |----|---|-------------------| | | | | | 1 | Relate to the structural organizations of algae, fungi, lichens and Bryophytes. | K1(R) | | 2 | Demonstrate both the theoretical and practical knowledge in understanding the diversity of basic life forms and their importance. | K2(U) | | 3 | Explain life cycle patterns in algae, fungi, lichens and Bryophytes. | K3(Ap) | | 4 | Compare and contrast the mode of reproduction in diverse groups of basic plant forms. | K4(An) | | 5 | Discuss and develop skills for effective conservation and utilization of lower plant forms. | K5 &
K6(Ev&Cr) | # Teaching plan Total Contact hours: 105 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | | sment
ours | Cognitive
level | Pedagogy | Student
Centric
Method | E-
Resources | Assessment/
Evaluation
Methods | |------|--------|--|-------------------|---|---------------|--------------------|--|---|---------------------|--------------------------------------| | I | 1 | General account of algology, Contributi ons of Indian Phycologi st (T.V.Desi kachary, V.Krishna murthy and V.S. Sundarali ngam), Classificat ion of algae by F.E. Fritsch (1935- | 4 | 1 | | K2(U) | Introductory
lecture, Lecture
using Chalk
and talk, Brain
Storming | Participative
Learning-
Brain
storming | E-content – MS Word | MCQ,
homework | | | 45) & Silva | | | | | | | | |---|--|---|---|--------|---------------------------------------|---|--|--| | | (1982). | | | W1(D) | | D | T | | | 2 | Salient features of major classes: Cyanophyc eae, Chlorophyc eae, Xanthophy ceae, Chrysophyc eae, Cryptophyc eae, Dinophycea | 4 | 1 | K1(R) | Context based | Participative
Role Play,
using visual
images | Interactive
PPT | Album
preparation,
Class test | | | e,
Chloromon
adineae,
Euglenophy
ceae,
Charophyce
ae, | | | | | | | | | | Bacillariop
hyceae,
Phaeophycea
e and
Rhodophyce
ae | | | | | | | | | 3 | Range of thallus organizati on, algae
of diverse habitats, reproducti on (vegetativ e, asexual and sexual) and life cycles | 4 | 1 | K1(R) | Blended
Learning,
Demonstrative | Experiential learning-making models | Youtube
videos | Online
assessment
and quiz
questioning
in the
classroom | | 4 | Phylogeny
and inter-
relationships
of algae,
origin and
evolution of
sex in algae. | 3 | | K4(An) | Reflective
thinking | Participative
Learning-
team
teaching | E-Content-
MS Word | Slip Test,
online
Assignment | | 5 | Structure, reproducti on and life histories of the following genera: Oscillator | 3 | | K5(Ev) | Collaboration | Experiential
Learning-
PowerPoint
presentation | Self
directed
active
learning | Student presentations , oral test | | | ia, Scytonem a, Ulva, Codium, Diatoms, | | | | | | | | | | | Dictyota and Gelidium. | | | | | | | | |----|---|--|---|---|--------|---|--|--|---| | II | 1 | FUNGI General Characteri stics, occurrence and distributio n | 4 | 1 | K2(U) | Integrative learning | Experiential
Learning-
Field visit | E content-
MS Word,
Interactive
E- Book | Conceptual
MCQs, Flip
grid, oral rest | | | | Mode of nutrition in fungi. Contributi ons of Indian Mycologis ts (C.V.Subram anian), | | | | | | | | | | 2 | Classificat ion of Fungi by Alexopoul os and Mims (1979) & Recent trends inthe classificati on of fungi - Phylogeny and inter- relationshi ps of major groups of | 4 | | K1(R) | Flipped
classroom,
Simualtion | Participative
learning-
Describing
visual
images | Self
prepared
videos, E-
content –
external
links | Preparation
of question
bank by
students,
CIA 1 | | | 3 | fungi. General characters of majorclass es: Mastigom ycotina, Zygomyco tina, Ascomyco tina, Basidiomy cotinaand Deuteromyc otina. | 4 | 1 | K3(Ap) | Demonstrative, lecture method, comparative charting | Group Discussion, Peer Teaching, Mind Mapping, Specimen Observation | Interactive
PPT, E-
Content-
external
links | Edpuzzle,
Online
assignment,
CIA I | | | 4 | Heterothal lism in fungi, sexuality in fungi, Para sexuality, sex | 3 | 1 | K4(An) | Lecture
Method,Chalk
and Talk,
Diagrammatic
Explanation | Participative Learning- Group Discussion, Peer Teaching, Concept Mapping | PowerPoin t Presentatio n, YouTube Lecture Clips, Virtual | Multiple
Choice
Questions
(MCQs),
Short
Answer
Questions,
Matching | | | 5 | hormones in fungi. Structure, reproducti on and life histories of the following genera: Plasmodio phora, Phytophth ora, Rhizopus, Taphrina, | 3 | | K5(E) | Lecture method, comparative analysis, demonstration, model-based teaching, experiential learning | Participative
Learning-
Group
discussion,
chart
preparation,
peer
explanation,
specimen
observation,
group
presentation,
case study | Microscop
y PowerPoin
t presentatio
ns, life
cycle
animations , microscopi
c images, virtual lab
simulation s, educationa l videos | Exercises, Diagram Labeling Test, MCQ quiz, short answers, diagram labeling | |---|-----|---|---|---|--------|---|---|--|---| | Ш | III | Polyporus and Colletotrichu m LICHENS Introductio n and Classificatio n (Hale, 1969). | 4 | 1 | K1 (U) | lecture method,
comparative
study
approach,
concept
mapping,
visual-based
teaching | Participative learning-group discussion, collaborative chart preparation, classification tree making, student presentations | PowerPoin t presentatio ns, classificati on videos, interactive quizzes, smartboar d diagrams. | Multiple
choice
questions,
short
answers,
diagram
labeling,
I CIA | | | 2 | Occurrence and interrelationship of phycobionts and mycobionts | 4 | | K2(R) | Lecture method, interactive discussion, concept explanation using analogies, comparative approach | Participative learning-Group discussion, peer teaching, collaborative chart making, case study analysis | Animated videos, PowerPoin t presentatio ns, YouTube documenta ries, virtual lab simulation s | MCQs, short
answer test,
oral
questioning,
worksheet
activity,
google forms | | | 3 | Structure and reproducti on in Ascoliche ns, Basiodioli chens and Deuteroliche ns. | 4 | 1 | K4(An) | demonstration,
comparative
analysis, chalk
and talk,
specimen-
based teaching | Experiential Learning- Group discussion, concept mapping, model making, chart preparation | Animated videos, PowerPoin t presentatio ns, virtual microscop y | MCQs,
diagram
labeling,
short notes | | | 5 | Structure and reproduction in Basiodioliche ns Structure and reproduction in Deuteroliche | 3 | 1 | K4(An) | Integrative Teaching, Lecture Method Simulation based approach | Experiential Learning- Mind map Experiential learning- Sales day | E-content, MS Power point E-content MS Word, Google classroom | Slip test,
Group
discussions
MCQ, Oral
test, II CIA | |----|----|---|---|---|--------|---|---|---|---| | IV | IV | BRYOPH YTES: General characters and Classificat ion of Bryophyte s by Watson (1971). | 4 | 1 | K2(U) | Lecture method, comparative taxonomy approach, concept mapping, classification tree drawing | Participative Learning- Group discussion, peer teaching, chart preparation, herbarium- based learning | PowerPoin t presentations, classification videos, online herbarium resources, virtual field tours | MCQ test,
short answer
writing, oral
quiz,
diagram
labelling | | | 2 | Distributio n, Stru ctural variations and evolution of gam etophytes and sporophyt es in Bryopsida, Anthocero psida and Mosses. | 4 | | K1(R) | Lecture method, comparative teaching, Inquiry based learning | Participative Learning- Group discussion, peer presentations , collaborative charts, self- learning modules, problem- based learning. | Animated videos, digital herbarium, PowerPoin t presentations, virtual microscop e tools | Short answer questions, comparative tables, diagram labeling, group assignments, formative MCQs | | | 3 | General characters of major groups - Marchanti ales, Jungerman iales, Anthocero tales, Sphagnales, Funariales and Polytrichales | 4 | 1 | K3(Ap) | Lecture method, comparative analysis, demonstration method, concept mapping. | Experiential Learning- Group discussion, chart preparation, herbarium observation, role play. | PowerPoin t presentatio n, animated videos, virtual microscop y tools, digital herbarium | Quiz, short
answer test,
diagram
labeling,
Google
forms | | | 4 | Reproduct ion Vegetativ e and sexual, spore dispersal mechanis ms in bryophyte s, spore germinati on patterns in bryophytes. | 3 | | K4(An) | Lecture method, demonstration, inquiry-based learning, | Participative learning-Group discussion, concept mapping, model making,field observation | PowerPoin t presentatio ns, animation videos on reproducti on and spore dispersal, YouTube videos on bryophyte life cycle | Quiz, diagram labeling, short answer questions, group, CIA II. Online assignment | |---|----|--|---|---|--------|---|---|---|--| | | 5 | Structure, reproducti on and life histories of the following genera: Targionia, PorellaandP olytrichum | 3 | 1 | K5(Ev) | Lecture method, demonstration method, comparative analysis, microscopic observation, model-based teaching | Participative learning- Group discussion, peer teaching, specimen sketching, concept mapping, collaborative learning | PowerPoin t presentatio ns, animated videos of life cycles, digital herbarium | Quiz, short
answers,
drawing and
description
tests, II CIA | | V | 1. | Economic Importance: Algae -Economic importance in Food and feed - Single
cell protein, | 4 | 1 | K3(Ap) | Lecture method, demonstration method, inquiry-based learning, concept explanation using examples. | Participative Learning- Group discussion, pair-share activity, concept mapping, poster making, student seminar. | PowerPoin t presentatio ns, animated videos on algal products, YouTube educationa l clips, virtual lab resources | MCQ test,
short answer
writing, oral
questioning,
concept map
evaluation,
poster
display
assessment. | | | 2. | Industrial products (Agar- Agar, Carrageen an, Alginic acid, | 4 | | K4(An) | Lecture
method,
demonstration
method | Participative
Learning-
Group
discussion,
peer
learning,
collaborative
projects,
case study
analysis,
hands-on
experiments | PowerPoin t presentations, educational videos, virtual lab simulations, animated videos, e-resources | MCQs, short
answer tests | | | Iodine, biofertiliz ers, Vitamins and biofuel), Medicinal value and Diatomace ous earth. | | | | | | and online
articles | | |----|--|---|---|--------|--|--|---|--| | 3. | Fungi – Economic importanc e in food, industries and medicine. Culturing and cultivation of mushroom s | 4 | 1 | K4(An) | Lecture
method,
demonstration
method,
activity-based
teaching | Experiential Learning- Group discussion, hands-on mushroom cultivation, peer teaching, poster presentation | PowerPoin t presentatio ns, video tutorials on mushroom cultivation , virtual lab simulation s, | MCQ tests,
short
answers,
practical
exam on
culturing | | 4. | Pleurotus. Lichen -economic importance and as indicator pollution. | 3 | 1 | K5(Ev) | Lecture
method,
inquiry-based
learning,
concept
explanation | Participative
Learning-
Group
discussion,
model
making | PowerPoin t presentatio n, YouTube videos on lichen types and pollution indicators | Quiz,
concept map
submission,
oral
questioning | | 5. | Bryophyte s - Ecologica l and economic importanc e - industry, horticulture and medicine. | 3 | | K5(Ev) | Lecture method, comparative teaching, interactive teaching. | Participative
Learning-
Group
discussion,
peer
presentation | PowerPoin t presentatio ns, Youtube videos, virtual herbarium | MCQs, short
and long
answer tests. | $Course\ Focussing\ on\ Employability/\ Entrepreneurship/\ Skill\ Development:\ \textbf{Employability},\ \textbf{Skill}\ \textbf{Development}$ Activities (Em/ En/SD): Model making Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): **Environment Sustainability** Activities related to Cross Cutting Issues: Algae field visit Assignment: Mode of nutrition in fungi./ online Seminar Topic: Heterothallism in fungi. #### Part A - 1. Who is the father of Algology? (K2 -U, CO 1) - 2. Which of the following fungi division includes 'Club fungi'?(K 1-R, CO-1) - a. Zygomycotina b. Deuteromycotina - b. Basidiomycotina d, Ascomycotina - 3. What is dolipore septum? (K 1-R, CO-1) - 4. What is the algal component of Lichen? (K 1-R, CO-1) - 5. Cite the lichen used as food. ?(K2 -U, CO 1) #### Part B - 1. Write short note on the thallus organisation of Algae. (K2-U, CO1) - 2. List out the general characters of Fungi (K2-R, CO-2) - 3. Categorize lichen based on habitat.(K5- Ev, CO-4) - 4. Explain the morphological and anatomical structures of Marchantia.(K4-An, C0-5) - 5. Compile the economic importance of Bryophytes. (K5-An, CO-5) ## Part C - 1. Classify Algae based on Fritsch.(K2-U, CO-1) - 2. Summarize Parasexuality in Fungi with neat labelled sketches.(K3-Ap, CO-3) - 3. Discuss the structure and reproduction in Lichen. (K3-Ap, CO-4) - 4. Explain the evolution of sporophytes in Bryophytes (K5-Ev, CO-4). - 5. Critique on the economic importance of Algae. (K5-An, CO-5) Head of the Department Dr. Sr. P. Leema Rose Course Instructor Dr. J. Celin Pappa Rani J. Colin Class : I M.Sc. Botany Title of the Course II: Plant Diversity II: Pteridophytes, Gymnosperms and Paleobotany Semester : 1 Course Code : BP231CC2 | Course Code | L | Т | P | S | Credits Inst. Hours | | Total | Marks | | | | |-------------|---|---|---|---|---------------------|---|-------|-------|----------|-------|--| | | | | | | | | Hours | CIA | External | Total | | | BP231CC2 | 4 | 3 | _ | - | 5 | 7 | 105 | 25 | 75 | 100 | | # **Learning Objectives:** - 1. To investigate the classification, distinctive traits, distribution and reproduction and life history of the various classes and major types of Pteridophytes and Gymnosperms. - 2. To identify and characterize diversity of lower vascular plants in order to comprehend the dynamics of diversity to realize the importance of diversity. #### **Course Outcomes** | Recall on classification, recent trends in phylogenetic relationship, General characters of Pteridophytes and Gymnosperms. CO-2 Learn the morphological/anatomical organization, life history of major types of Pteridophytes and Gymnosperms. Comprehend the economic importance of Pteridophytes, Gymnosperms, and fossils. CO-4 Understanding the evolutionary relationship of Pteridophytes and Gymnosperms. Awareness on fossil types, fossilization and fossil records of PSO-9 K1 & K3 K3 & K4 PSO-4 K3 & K4 PSO-3 K3 & K5 PSO-1 K2 CO-4 PSO-9 K1 & K3 K3 K4 CO-5 PSO-9 K1 & K3 K3 K5 CO-6 PSO-9 K1 & K3 K3 K5 CO-7 PSO-9 K1 & K3 CO-7 PSO-9 K1 & K3 | COs | Upon completion of this course, students will be able to: | PSO addressed | CL | |--|------|---|---------------|---------| | CO-2 Learn the morphological/anatomical organization, life history of major types of Pteridophytes and Gymnosperms. Comprehend the economic importance of Pteridophytes, Gymnosperms, and fossils. CO-4 Understanding the evolutionary relationship of Pteridophytes and Gymnosperms. Awareness on fossil types, fossilization and fossil records of PSO-9 K1 & K3 CO-5 | CO-1 | relationship, General characters of Pteridophytes and | PSO-2 | K1 &K3 | | CO-3 Gymnosperms, and fossils. CO-4 Understanding the evolutionary relationship of Pteridophytes and Gymnosperms. Awareness on fossil types, fossilization and fossil records of PSO-9 K1 & K3 | CO-2 | | PSO-4 | K3 & K4 | | CO-4 Understanding the evolutionary relationship of Pteridophytes and Gymnosperms. Awareness on fossil types, fossilization and fossil records of PSO-9 K1 & K3 | CO-3 | Gymnosperms, and | PSO-3 | K3 & K5 | | CO-5 | CO-4 | | PSO-1 | K2 | | | CO-5 | | PSO-9 | K1 & K3 | # Teaching plan ## **Total Contact hours: 105 (Including lectures, assignments and tests)** | Un
it | Modul e (Mini mum 5 to Maxi mum 10 modul es are permit ted) | Торіс | Teaching
Hours | Ass
ess
me
nt
Ho
urs | Cog
nitiv
e
level | Pedagogy | Student
Centric
Method | E-
Resources | Assessment/
Evaluation
Methods | |----------|---|-----------------------------|-------------------|-------------------------------------|----------------------------|-------------------------|---|----------------------------|--------------------------------------| | I | | | | | | | | | | | | 1 | General characteristics and | 4 | 1 | K2(
U) | Lecture using Chalk and | Participative
Learning- Team
Teaching | Interactive PPT, E-content | MCQ, Quizzes | | | | classificatio | | 1 | | talk, Brain | | MS Power | | |-----|---|--|---|---|------------|---|--|--|---| | | | n (Reimer, | | | | Storming | | point | | | | | 1954).Stellar | | | | | | | | | | 2 | evolution. Range of | 4 | _ | K1(| Cooperative | Participative | You tube | Online Quiz- | | | 2 | structure,
reproduction | 4 | | R) | learning-
Group
Discussion | Learning- Demonstration, Role Play | videos,
GAMMA
PPT | Google Forms, Just a Minute | | | | evolution of
the
gametophyte
s | | | | | | | | | | 3 | Gametophyt e types – sex organs. Apogamy and Apospory. | 4 | 1 | K3(Ap) | Reflective
Thinking,
Blended
Learning | Collaborative learning- Mind mapping, | E-content-
MS Word | Open book
Test, MCQ | | | 4 | Life cycles. Heterospory and seed habit, Telome theory. | 3 | | K4(
An) | Lecture using
videos, Brain
Storming | Participative
Learning- Flow
Chart Analysis | Interactive
PPT | Slip Test,
Unnounced
Test | | | 5 | Morphogene sis, Economic importance of Pteridophyte s. | 3 | 1 | K5(
E) | Embodied
Learning,
Lecture
Method | Experiential
Learning- Exhibit on Economic important product | You tube
Videos,
GAMMA
PPT | Oral Test,
Memory game | | II | 1 | Structure,
anatomy,
reproduction
and life
histories of
Isoetes | 4 | 1 | K2(
U) | Inquiry based
approach,
Brain
Storming | Experiential
Learning- Role
play, Mind map | You tube
videos,
Econtent-
MS Word | Class test,
Open book test | | | 2 | Structure,
anatomy,
reproduction
and life
histories of
Equisetum | 4 | 1 | K1(
R) | Simulation
based
approach,
Lecture
Method | Experiential
Learning-
Making models | E-
Content-
External
links, PPT | Creative
drawing,
Online Quiz-
Google form | | | 3 | Structure,
anatomy,
reproduction
and life
histories of
Angiopteris | 4 | | K3(
Ap) | Integrative
Teaching,
Demonstrativ | Experiential Learning- Demonstration of experiments | Discussio
n Forum-
Google
classroom,
PPT | Online
Assignment,
Observation
Notes | | | 4 | Structure,
anatomy,
reproduction
and life
histories of
Osmunda | 3 | 1 | K4(
An) | Embodied
Learning,
Brain
Storming | Participative
Learning-
Practical | Interactive
E-book,
Interactive
PPT | Oral
Presentation,
Oral Test | | | 5 | Structure,
anatomy,
reproduction
and life
histories of
<i>Pteris</i>
And <i>Azolla</i> . | 3 | | K5(
E) | Blended
Learning,
Gamification | Participative
Learning-
Assignments | E-content-
MS Word,
Google
classroom | Group
discussion,
Slip Test | | III | 1 | General
characters -
A general | 3 | 1 | K2(
U) | Brain
Storming, | Participative
learning- Group
discussion | Discussio
n forum-
Mentimete | Quiz
questioning in
the classroom, | | П | | | | 1 | | T . | <u> </u> | Г | 01 : | |----|---|---|---|---|------------|---|---|---|---| | | | account of
distribution
of
Gymnosper
ms. | | | | Lecture
Method | | r, E-
content
MS Word | Observation notes | | | 2 | Morphology
, anatomy of
Gymnosper
ms. | 3 | | K1(
R) | Reflective
Thinking,
Demonstrativ | Participative
learning-
Describing
visual image | YouTube
videos,
Interactive
PPT | Album
preparation,
Oral
presentation | | | 3 | Reproductio
n, phylogeny
of
Gymnosper
ms. | 3 | 1 | K3(
Ap) | Blended
Learning,
Collaboration | Experiential Learning- Arranging exhibition | Interactive
E-book,
PPT | Open book
test, Just a
Minute | | | 4 | Classificatio
n of
Gymnosper
ms.
(K.R.Sporne,
1965). | 3 | 1 | K4(
An) | Integrative
Teaching,
Lecture
Method | Experiential
Learning- Mind
map | E-content,
MS Power
point | Slip test,
Group
discussions | | | 5 | Economic importance of Gymnosper ms. | 3 | | K5(
E) | Simulation
based
approach | Experiential
learning- Sales
day | E-content
MS Word,
Google
classroom | MCQ, Student presentations | | IV | 1 | Structure
(Exomorphic
and
endomorphic
), anatomy,
reproduction
and life
histories of
Thuja | 4 | 1 | K2(
U) | Co-operative
Learning,
Lecture
Method | Participative
Learning- Using
visual images
and models | E- content
MS word,
Whats app
poll | Homework,
CIA,
Assignment | | | 2 | Structure (Exomorphic and endomorphic), anatomy, reproduction and life histories of <i>Cupressus</i> | 4 | | K1(
R) | Reflective
Thinking,
Brain
Storming | Participative
Learning-
Interaction in
the classrooms | Discussio
n forum-
Mentimete
r, E-
content
MS Word | Quiz- Quizzes
and google
forms | | | 3 | Structure (Exomorphic and endomorphic), anatomy, reproduction and life histories of <i>Araucaria</i> | 4 | 1 | K3(
Ap) | Simulation
based
approach,
Lecture
Method | Experiential
Learning-
Demonstration | YouTube
videos,
Interactive
PPT | Online
Assignment,
open book test | | | 4 | Structure
(Exomorphic
and
endomorphic
), anatomy,
reproduction
and life
histories of
Podocarpus | 2 | | K4(
An) | Integrative
Thinking,
Gamification | Participative
learning-
Memory game | Interactive
E-book,
PPT | Oral
Presentation,
Just a minute | | | 5 | Structure
(Exomorphi
c and | 2 | 1 | K5(
E) | Inquiry based approach, | Participative
learning- group
discussions | E-content,
MS Power
point | Observation notes, Creative writing | | | | | | _ | | | | | | |---|----|--|---|---|------------|---|---|--|---| | | | endomorphi
c), anatomy,
reproduction
and
life histories | | | | Flipped
Classrooms | | | | | | 6 | of Gnetum Structure (Exomorphi c and endomorphi c), anatomy, reproduction and life histories of the following genera: | 2 | | K5(
E) | Blended
Learning,
Lecture
Method | Experiential
learning-
making models | E-content
MS Word,
Google
classroom | Preparation of quiz questions by the students | | V | 1. | PALEOBO TANY: Geological Scale; Radiocarbon dating;. Fossilization and fossil types. | 4 | 1 | K2(
U) | Brain
Storming,
Lecture
Method | Participative
Learning- Role
play, Mind map | Interactive
PPT, E-
content
MS Power
point | Class test,
Open book test | | | 2. | Contribution
of
BirbalSahni
to
Paleobotany,
Gondwana
flora of
India. | 4 | | K1(
R) | Reflective
Thinking,
Demonstrativ
e | Participative
Learning-
Making models | You tube
videos,
GAMMA
PPT | Creative
drawing,
Online Quiz-
Google form | | | 3. | Study of fossils in understandin g evolution, Economic importance of fossils. fossil fuels and industrial raw materials and uses | 4 | 1 | K3(
Ap) | Blended
Learning,
Collaboration | Experiential Learning- Demonstrative | E-content-
MS Word | Online
Assignment,
Observation
Notes | | | 4. | Study of organ genera: Rhynia, Lepidocarpo n | 2 | | K4(
An) | Integrative
Teaching,
Lecture
Method | Participative
Learning-
Practical | Interactive
PPT | Oral
Presentation,
Oral Test | | | 5. | Study of organ genera: Calamites, C ordaites | 2 | 1 | K5(
E) | Simulation
based
approach | Participative
Learning-
Assignments | You tube
Videos,
GAMMA
PPT | Group
discussion,
Slip Test | | | 6. | Study of organ genera:Lygin opteris. | 2 | | K5(
E) | Lecture
method,
blended
learning | Participative learning- Role play | Interactive
PPT | Student presentations, MCQ | Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability Activities related to Cross Cutting Issues:- Field Visit Assignment: Economic importance of Pteridophytes, Economic importance of fossils. fossil fuels and industrial raw materials Seminar Topics: Classification of Gymnosperms. (K.R.Sporne, 1965). # Part A (1 mark) - 1. Spores of Pteridophytes are (K1-R, CO-1) - a. Haploid b. Diploid c. Triploid d. Tetraploid - 2. In Pteridophytes, the dominant generation is (K2-U, CO-2) - a. Gametophytic (b) haploid (c) diploid (d) triploid - 3. Reduction division in pteridophytes occurs in (K1-R, CO-1) - (a) Prothallus is formed (b) Gametes are formed - (c) spores are formed - (d) sex organs are formed - 4. In pteridophytes, the gametophyte is dominant, while sporophyte is a dependent generation-State True or False. (K1-R, CO-1) - 5. The phloem of pteridophytes does not possess ______cells. (K4-An, CO-3) #### Part B (6 marks) - 1. Describe the structure and reproduction in Coniferales (**K2-U, CO-1**) - 2. Write an essay on evolution of Gymnosperms (**K2-U, CO-2**) - 3. Discuss the variation in the structure of female gametophyte in Gymnosperms (K3-Ap, CO-2) - 4. Write short notes on Cordaitales (K1-R, CO-4) - 5. Comment on Lyginopteris (K3-Ap, CO-5) Part C (12 marks) - 1. Write a classification of pteridophytes in detail. (K1-R, CO-1) - 2. Explain the life history of Osmunda in detail. (K2-U, CO-2) - 3. Write a detail account on "Telome theory". (K2-U, CO-1) - 4. Explain the lifecycle of Isoetes. (K2-U, CO-3) - 5. Give a details about of fossil formation. (K2-U, CO-5) **Head of the Department** Course Instructor Dr.W.Vincy Dr. Sr. P. Leema Rose Class : I M.Sc. Botany Title of the Course : CORE LAB COURSE-I: LABORATORY COURSE COVERING CORE PAPERS- I AND II Semester : I Course Code : BP231CP1 | Course Code | ourse Code L T P S Credits Inst. Hours | | | Marks | | | | | | | |-------------|--|---|---|-------|---------|---|-------|-----|----------|-------| | | | | | | 0.00000 | | Hours | CIA | External | Total | | BP231CP1 | - | - | 6 | - | 4 | 6 | 90 | 25 | 75 | 100 | ## **Learning Objectives:** - 1. To learn how to employ the use of instruments, technologies and methodologies related to thallophytes and non-flowering plant groups. - 2. To comprehend the fundamental concepts and methods used to identify Bryophytes, Pteridophytes and Gymnosperms through morphological changes and evolution, anatomy and reproduction. #### **Course Outcomes** | COs | Upon completion of this course, students will be able to: | PSO
addressed | CL | |------|---|---------------|---------| | | recall and applying the basic keys to distinguish at species level identification of | PSO-1 | K1 | | CO-1 | important algae and fungi through its structural | | | | | organizations. | | | | СО-2 | demonstrate practical skills in thallophytes, Pteridophytes and Gymnosperms. | PSO-2 | K2 & K6 | | CO-3 | describe the structure of algae, fungi, lichens, Bryophytes,
Pteridophytes and | PSO-3 | К3 | | | Gymnosperms. | | | | CO-4 | determine the importance of structural diversity in the evolution of plant forms | PSO-3 | K4 | | CO-5 | formulate techniques to isolate and culture of alga and fungi
as well as to understand the diversity of plant forms. | PSO-3 | K5 | # Teaching plan Total Contact hours: 90 (Including lectures, assignments and tests) | Unit | Торіс | Teaching
Hours | Asse
ssme
nt
Hou
rs | Cog
nitiv
e
level | Pedagogy | Student
Centric
Method | E-
Resource
s | Assessment/ Evaluation Methods | |------|----------------------|-------------------|---------------------------------|----------------------------|-----------|------------------------------|---------------------|--------------------------------| | I | | | | | | | | | | | ALGAE | 20 | 2 | K3(| Live | Experient | Videos & | Lab | | | T 1 1 1 1 | | | Ap) | demonstra | ial | Animatio | Performance - | | | External morphology | | | | tion of | Learning- | ns- | assessment on | | | and internal anatomy | | | | culture | Group | YouTube | culture | | | of the vegetative and reproductive structures of the following living forms: Oscillatoria, Ulva, Diatoms and Dictyota Padina and Gelidum. Preparation of culture media and culture of green algae and blue green algae in the laboratory (Demonstration) | | | | media preparatio n and algal culture. Microscop ic demonstra tion of vegetative and reproducti ve structures | Work & Peer Learning Microsco py Hands-On Students rotate through lab stations to observe and sketch structures of each alga. | channels:
CrashCou
rse
Biology,
Bozeman
Science,
MIT
OpenCou
rseWare | preparation,
slide making,
and microscopic
identification
Sketch and
Label Exercises-
Drawing
observed algae
with properly
labeled
vegetative and
reproductive
parts | |-----|---|----|---|------------|--|---|--|--| | II | Study of morphological and reproductive structures of the following living forms: Plasmodiophora, Phytophthora, Rhizopus, Taphrina, Polyporus and Colletotrichum. Isolation and identification of fungi from soil, air, and Baiting method. Preparation of culture media. Cultivation of mushroom in the laboratory (Demonstration). LICHENS Study of morphological and reproductive structures of the genera Usnea | 20 | 2 | K4(Ap) | Microsco py Integratio n-Show vegetative and reproducti ve structures using temporary and permanent slides. | Experient ial Learning- Hands- On Practical Work, Virtual Labs & Simulati ons | OLabs (India), and Virtual Microsco py tools for fungal spore observati on | Diagram and Label Tests-Sketch and label reproductive structures | | III | External morphology and internal anatomy of the vegetative and reproductive organs of the following living forms: Riccia, Targionia, Anthoceros, Polytrichum | 20 | 2 | K4(
An) | Microscop
ic
Demonstr
ation,
Comparati
ve
Morpholo
gy Charts | Lab-
Based
Learning,
Field
Collectio
n Activity | YouTube
Education
al
Channels,
Virtual
Lab
Platforms | Practical Slide
Identification,Vi
va,Lab Record
Evaluation | | IV | External morphology and internal anatomy of the vegetative and reproductive organs of the following living forms: <i>Isoetes, Pteris, Equisetum</i> and <i>Azolla.</i> Fossil slides observation: <i>Rhynia, Lepidocarpon, Calamites</i> | 20 | 2 | K3(
Ap) | Storytellin g Approach (Paleobota ny), Specimen Walkthrou gh- Hands-on explanatio n of preserved plant parts | Role-Play
as Paleo-
Botanists,
Field
Analogies | Virtual
Labs,
Mobile
Apps | Observation
Records &
Sketches,Slide
Identification | |----|--|----|---|------------|--|---|---|--| | V | External morphology and internal anatomy of the vegetative and reproductive organs of the following living forms: Cupressus, Araucaria, Podocarpus, Fossil slides observation: Cordaites Lyginopteris | 10 | 2 | K4(
An) | Fossil-Based Historical Approach, Theory- Practical Integratio | Microsco
py and
Slide
Analysis,
Specimen
Study &
Identifica
tion | Digital
Microsco
py Slides,
Virtual
Labs &
Databases | Practical Exam,
Record
Evaluation | Activities (Em / En /SD): Microscopic Demonstration, Comparative Morphology Charts Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - #### **Environment Sustainability** Activities related to Cross Cutting Issues:- Hands on training- Entrepreneurial activity Assignment: Observation Records & Sketches #### **Sample Questions** - 1. Make suitable micro preparation of A and B. Identify giving reasons, draw labelled diagrams and submit the slide for valuation. (2X6= 12 marks) - 2. Make suitable micro preparation of C. Identify the importance, draw labelled diagrams and submit the preparation for valuation. (1X 6 = 6 marks) - 3. Dissection and observation of embryos (globular and cordate embryos) **D.** Show the slide for valuation. (1x 2=2 marks) - 4. Calculate dominance / abundance, density, frequency and species diversity in the study area by quadrat / line transect method with application of Raunkiaer's life-form method /Shannon-Wiener species index. (1x10=10 marks) - 5. Identify, draw diagram and write notes on E, F and G (4 X 3= 12marks) - 6. Write the botanical name of given plant specimen H by using flora (J.S.Gamble) (1X2=2marks) - 7. Describe the given plant specimen I with technical terms, draw sketches of floral importance and write floral formula. Dissect out the floral parts and submit the slide for valuation. (1 X 9) = 9 marks) - 8. Construct a dichotomous key using the given specimens J, K, L, M and $N (1 \times 5 = 5 \text{marks})$ - 9. Write Botanical name, family, useful part and uses of \mathbf{O} , \mathbf{P} and \mathbf{Q} (3 X 4 = 12 marks) Submission: Herbarium Head of the Department Dr. Sr. P. Leema Rose Course Instructor Dr.J.Celin Pappa Rani Class : I M.Sc. Botany Title of the Course : Elective I MICROBIOLOGY, IMMUNOLOGY AND PLANT PATHOLOGY Semester : I Course Code : BP231EC1 9th edition. | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | Marks | | | | |-------------|---|---|---|---|------------|-------------|-------|-------|----------|-------|--| | | | | | | 2.2.0.2.02 | | Hours | | External | Total | | | BP231EC1 | 4 | 1 | _ | _ | 3 | 5 | 75 | 25 | 75 | 100 | | # **Learning Objectives:** - 1. To provide comprehensive knowledge about microbes and its effect on man and environment. - 2. To provide comparative analysis of major groups of microbes. #### **Course Outcomes** | COs | Upon completion of this course, students will be able to: | PSO
addressed | CL | |------|--|------------------|-------------------| | CO-1 | Recognize the general characteristics of microbes, plant defense and immune cells. | PSO-1 | K1 (K) | | CO-2 | Explain about the stages in disease development and various defense mechanisms in plants and humans. | PSO-1 | K2 (U) | | СО-3 | Elucidate concepts of microbial interactions with plant and humans | PSO-3 | K3 (AP) | | CO-4 | Analyze the importance of harmful and beneficial microbes and immune system | PSO-9 | K4 (AN) | | CO-5 | Determine and interpret the detection of pathogens and appreciate their adaptive strategies. | PSO-4 | K5 & K6(C &
E) | ## Teaching plan # **Total Contact hours*: 75 (Including lectures, assignments and tests)** | Unit | Modul
e | Topic | Teac
hing
Hour
s | Asses
sment
Hours | Cogni
tive
level | Pedagogy | Student Centric
Method | E-
Resources | Assessment/ Evaluation Methods | |------|------------|--|---------------------------|-------------------------
------------------------|---|--|--|--------------------------------| | I | | | - | | | | | | | | | 1. | Types of microorga nisms. General characteris tic of bacteria – Outline classificati on of | 2 | 1 | K2(U) | Lecture using
Chalk and
talk, Brain
Storming | Participative
Learning- Team
Teaching,
Assignment | Interactive
PPT, E-
content
MS Power
point | MCQ, Quiz, Open book
test | | | | Bergey's manual of | | | | | | | | | 2. | Classifi cation of bacteri a based on Morph ologica l, cultural , physiol ogical and molecular characteristi cs. | 2 | | K
3(Ap) | Cooperative
learning-
Group
Discussion,
Reflective
Thinking | Participative
Learning-
Demonstration,
Role Play | You tube
videos,
GAMMA
PPT | Online Quiz- Google
Forms, Just a Minute | |----|---|---|---|------------|--|---|--|---| | 3. | Bacteri al growth – batch culture and continu ous culture. Growth Curve. Factors affecting growth | 2 | 1 | K1(K) | Reflective
Thinking,
Blended
Learning | Collaborative learning- Mind mapping, | E-content-
MS Word,
Interactive
PPT | Open book Test, MCQ, Online Asingment | | 4. | Determinati on of bacterial growth – Direct method: Haemocyto meter, Viable plate count; Indirect method: Turbidity. Nutritional types. | 2 | | K4(A
n) | Lecture using videos, Brain Storming, Integrative Teaching | Participative Learning- Flow Chart Analysis, | Interactive
PPT,
Discussion
Forum-
Google
Classroom | Slip Test, Unnounced
Test, Oral presentation | | 5. | Reproductio n - Fission and sporulation. Genetic recombinati on- Transformati on, Transductio n and Conjugation | 2 | 1 | K5(E) | Embodied
Learning,
Lecture
Method | Experiential
Learning-
Describing visual
images | You tube
Videos,
GAMMA
PPT | Oral Test, Memory game, MCQ | | 6. | Isolation
and
cultivation
of bacteria.
Maintenanc
e of | 2 | | K2(U) | Reflective
Thinking,
Simulation
based approach | Experiential
Learning- Hands
on training | Interactive
E-book,
Whats app
poll | Oral Test, Oral
presentation, Quiz | | | | bacterial | |] | | | | | | |-----|----|--|---|---|------------|---|---|--|--| | П | 1. | culture. General characters, Classificatio n, Structure, Multiplicati on of virus | 2 | 1 | K2(U) | Inquiry based
approach,
Brain
Storming | Experiential
Learning- Role
play, Mind map | You tube
videos,
Econtent-
MS Word | Class test, Open book
test | | | 2. | Overview of Phycoviruse s and Mycoviruse s. Viruses of Eukaryotes – Animal & Plant viruses. | 2 | | K
3(Ap) | Simulation
based
approach,
Lecture
Method | Experiential
Learning- Making
models | E-
Content-
External
links, PPT | Creative drawing,
Online Quiz- Google
form | | | 3 | Cultivation of viruses – in embryonat ed egg and in plants. Control of viral infections. | 2 | 1 | K1(K) | Integrative
Teaching,
Demonstrative | Experiential
Learning-
Demonstration of
experiments | Discussion
Forum-
Google
classroom,
PPT | Online Assignment,
Observation Notes | | | 4 | Bacteriopha
ges-
classificatio
n,
replication
of DNA and
RNA
phages-
Lytic and
Lysogenic
cycle | 2 | | K4(A
n) | Embodied
Learning,
Brain
Storming | Participative
Learning-
Practical | Interactive
E-book,
Interactive
PPT | Oral Presentation, Oral
Test | | | 5 | Viroids and prions. Mycoplasm a: Structure and classificatio n. | 2 | | K5(E) | Blended
Learning,
Gamification | Participative
Learning-
Assignments | E-content-
MS Word,
Google
classroom | Group discussion, Slip
Test, MCQ | | III | 1 | Beneficial role of microbes – yoghurt, Olives, Cheese, Bread, Wine, Tempeh, Miso & Fermented green tea. | 2 | 1 | K
3(Ap) | Brain
Storming,
Lecture
Method | Participative
learning- Group
discussion | Discussion
forum-
Mentimete
r, E-
content
MS Word | Quiz questioning in the classroom, Observation notes | | | 2 | Spoilage of fruits, vegetables, meats, poultry, eggs, bakery products, | 2 | | K1(R) | Reflective
Thinking,
Demonstrative | Participative
learning-
Demonstration of
Experiments | YouTube
videos,
Interactive
PPT | Album preparation, Oral presentation | | | | | | i i | | T | | T | | |---|---|----------------------------|---|-----|----------|----------------------------|---------------------------------|----------------|---| | | | dairy | | | | | | | | | | | products | | | | | | | | | | | and canned | | | | | | | | | | 2 | foods. | | 1 | T7 4 / A | D1 1 1 | E ' 4' 1 | T / time | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 3 | Microbial toxins - | 2 | 1 | K4(A | Blended | Experiential | Interactive | Open book test, Just a
Minute | | | | Exotoxin, | | | n) | Learning,
Collaboration | Learning-
Individual project | E-book,
PPT | Militute | | | | Endotoxin | | | | Collaboration | marviduai project | 111 | | | | | & | | | | | | | | | | | Mycotoxin. | | | | | | | | | | | Action of | | | | | | | | | | | Enterotoxin, | | | | | | | | | | | Cytotoxin& | | | | | | | | | | | Neurotoxin. | | | | | | | | | | | Food | | | | | | | | | | | Preservation | | | | | | | | | | | _ | | | | | | | | | | | temperature, | | | | | | | | | | | drying, | | | | | | | | | | | radiation | | | | | | | | | | | and | | | | | | | | | | | chemicals. | | | | | | | | | | 4 | Soil | 2 | | K5(E) | Integrative | Experiential | E-content, | Slip test, Group | | | | Microbiolog | | | | Teaching,
Lecture | Learning- Mind map | MS Power point | discussions | | | | y:
Importance | | | | Method | Шар | point | | | | | of Microbial | | | | Wicthod | | | | | | | flora of soil | | | | | | | | | | | and | | | | | | | | | | | factors | | | | | | | | | | | affecting the | | | | | | | | | | | microbial | | | | | | | | | | | community | | | | | | | | | | | in soil. | | | | | | | | | | | Interaction | | | | | | | | | | | among soil | | | | | | | | | | | microbes | | | | | | | | | | | (positive | | | | | | | | | | | and negative | | | | | | | | | | | interactions) | | | | | | | | | | | & with | | | | | | | | | | | higher | | | | | | | | | | | plants | | | | | | | | | | | (rhizosphere &phyllosph | | | | | | | | | | | ere). | | | | | | | | | - | 5 | Microorgani | 2 | 1 | K2(U) | Simulation | Experiential | E-content | MCQ, Student | | | 5 | sms in | 2 | 1 | 152(0) | based | learning- | MS Word, | presentations | | | | organic | | | | approach | Industrial visit | Google | Presentations | | | | matter | | | | 11 | | classroom | | | | | decompositi | | | | | | | | | | | on. | | | | | | | | | | | Environmen | | | | | | | | | | | tal | | | | | | | | | | | Microbiolog | | | | | | | | | | | y: | | | | | | | | | | | Microbiolog | | | | | | | | | | | y of water | | | | | | | | | | | and air. | | | | | | | | | | | Water borne | | | | | | | | | | | diseases - | | | | | | | | | | | diphtheria,
chicken pox | | | | | | | | | | | cincken pox | | | l | | | I | | | | | 1 | | Ĩ | | T | 1 | r | | |----|---|--|---|---|------------|--|---|--|--------------------------------------| | | 6 | Air borne
diseases -
Swine flu
and
Measles.
Microbial
degradation
of chemical
pesticides
and
hydrocarbon | 2 | | K3(A p) | Emboided Learning, Lecture Method | Participative
learning- Case
Study | E-content-
External
link | Seminar presentation, Open book test | | IV | 1 | Introductio n; Immune System; Types of Immunity - Innate and Acquired.I mmune Cells - Hematopoi esis, B and T lymphocyt es - Maturation, NK cells | 3 | 1 | K4(A
n) | Co-operative
Learning,
Lecture
Method | Participative
Learning- Using
visual images and
models | E- content
MS word,
Whats app
poll | Homework, CIA,
Assignment | | | 2 | Introduction to inflammation, Adaptive immune system, Innate Immune system. Antigen: Definition, Properties and types. Antibod y — Structure, types and function. | 3 | | K5(E) | Reflective
Thinking,
Brain
Storming,
Lecture
Method | Participative Learning- Interaction in the classrooms | Discussion
forum-
Mentimete
r, E-
content
MS Word | Quiz- Quizzes and google forms | | | 3 | Generation of antibody diversity. A ntigen - Antibody interactions : definition, types- Precipitatio n, Agglutinati | 3 | 1 | K2(U) | Simulation
based
approach,
Lecture
Method,
Reflective
Thinking | Experiential Learning- Demonstration | YouTube
videos,
Interactive
PPT | Online Assignment, open book test | | | | T | | 7 | | T | Ī | T | <u> </u> | |---|----
---|---|---|------------|--|--|--|--| | | | on,
Complemen | | | | | | | | | | | t fixation. | | | | | | | | | | 4 | Immune Response – Humoral and Cell Mediated. Vaccines – history, types and recombinant | 3 | | K
3(Ap) | Integrative
Thinking,
Gamification | Participative
learning- Memory
game, Role play | Interactive
E-book,
PPT | Oral Presentation, Just
a minute, Memory
games | | | | vaccines | | | | | | | | | | 5 | Immunodia
gnosis –
Blood
Grouping,
Widal test,
Enzyme-
Linked
Immunosor
bent Assay
(ELISA). | 3 | | K1(K) | Inquiry based
approach,
Flipped
Classrooms | Participative
learning- group
discussions | E-content,
MS Power
point | Observation notes, Creative writing | | | 6 | Immunoelec
trophoresis
and
Immunodiff
usion. | 2 | | K4(A
n) | Blended
Learning,
Lecture
Method | Experiential
learning-
Demonstration of
Experiments | E-content
MS Word,
Google
classroom | Preparation of quiz questions by the students | | V | 1. | History and significance of plant pathology. Classificati on of plant diseases, Symptomol ogy (important symptoms of plant pathogens). | 2 | 1 | K2(U) | Brain
Storming,
Lecture
Method | Participative
Learning- Role
play, Mind map | Interactive
PPT, E-
content
MS Power
point | Class test, Open book test | | | 2. | Causal agents of plant diseases - biotic causes (fungi, bacteria virus, mycoplasm a, nematodes, parasitic algae | 2 | | K
3(Ap) | Reflective
Thinking,
Simulation
based
approach | Participative
Learning-
Describing visual
images | You tube
videos,
GAMMA
PPT | Creative drawing, Online Quiz- Google form | | | 3. | Angiosperm ic parasites - Abiotic causes (Physiologic al, deficiency of nutrients | 2 | | K1(K) | Blended
Learning,
Collaboration | Experiential
Learning- Video
making | E-content-
MS Word | Online Assignment, Observation Notes | | | 1 | ı | 1 | | 1 | Γ | T | | |----|---|---|---|---------|---|--|--|--| | | & minerals and pollution). Mechanism of penetration-Disease developmen t of pathogen (colonization) and dissemination of pathogens. | | | | | | | | | 4. | Role of enzymes and toxins in disease developme nt. Important diseases of crop plants in India - Sheath blight of rice, Late blight of potato, Little leaf of Brinjal and Red rust of tea | 2 | 1 | K4(A n) | Integrative Teaching, Lecture Method | Participative Learning- Preparing and demonstrative exhibits | Interactive
PPT, E-
content
MS word | Oral Presentation, Oral Test | | 5. | Principles of disease managemen t – Cultural practices, physical, chemical and biological methods, disease controlled by immunizatio n | 2 | | K4(A n) | Simulation
based
approach | Participative
Learning- online
Assignments | You tube
Videos,
GAMMA
PPT | Group discussion, Slip
Test | | 6. | Biocontrol -
merits and
demerits;
Diagnostic
technique to
detect
pest/pathog
en infection | 2 | | K5(E) | Lecture
method,
Blended
learning | Participative
learning- Seminar | Interactive
PPT,
Mentimete
r | Student presentations,
MCQ, Online quiz,
google form | Activities (Em / En /SD): Preparing and demonstrating pathogen exhibits Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Environment Sustainability Activities related to Cross Cutting Issues:- Industrial Visit- Microbiology Assignment: Classification, Structure, Multiplication of virus, Genetic recombination- Transformation, Transduction and Conjugation Seminar Topics: Spoilage of fruits, vegetables, meats, poultry, eggs, bakery products, dairy products and canned foods. #### Part A (1 mark) - 1. Which of the following immunity is obtained during a lifetime? (K2-U, CO-2) - a. Acquired immunity b. Active immunity c. Passive immunity d. None of the above. - 2. Which of these bacterial components is least likely to contain useful antigens? (K2-U, CO-2) - a. Cell wall b. Flagella c. Ribosomes d. Capsule - 3. Which of the following contains structures composed of N-acetylmuramic acid and N-acetylglucosamine? (K1-R, CO-1) - a. Mycoplasmas b. Amoeba c. E.coli d. Spheroplast - 4. The association of endotoxin in gram-negative bacteria is due to the presence of (K3-Ap, CO-3) - a. Steroids b. Peptidoglycan c. Lipopolysaccharides d. Polypeptide - 5. Which of the following is a gram-positive eubacterium? (K1-R, CO-1) - a. Actinomyces b. Clostridium c. Rhizobium d. Clostridium Part B (6 marks) - 1. Determine the bacterial count methods (K1-R, CO-1) - 2. Discuss viriods. (K2-U, CO-2) - 3. Spoilage of microbes in fruits- Justify (K4-An, CO-2) - 4. Differentiate Acquired Immunity & Innate Immunity. (K3-Ap, CO-4) - 5. Recall Citrus Canker. (K5-Ev, CO-5) #### Part C (12 marks) - 1. Explain the Bacterial growth culture and its methods. (**K2-U, CO-1**) - 2. Formulate the nomenclature and classification of virus. (K3-Ap, CO-2) - 3. Criticize the beneficial role of microbes with a relevant example. (**K6-Cr, CO-3**) - 4. Analyze, how cytokines act as a signalling molecules to mediate and regulate immunity? (K4-An, CO-4) - 5. Recall Late Blight of Potato with respect to its casual organism, disease cycle, symptoms and control measures. (K5-Ev, CO-5) Head of the Department Dr. Sr. P. Leema Rose Course Instructor Dr. S.Kala Vetha Kumari Class : I M.Sc. Botany Title of the Course : Elective I ETHNOBOTANY, NATUROPATHY AND TRADITIONAL HEALTH CARE Semester : I Course Code : BP231EC4 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | | | | |-------------|---|---|---|---|---------|-------------|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | BP231EC4 | 4 | 1 | - | - | 3 | 5 | 75 | 25 | 75 | 100 | # **Learning Objectives:** - 1. Understand the concept of ethnobotany and the life style and traditional practices of plants by Indian tribals. - 2. Emphasize the importance of non-timber forest products for Indian tribal people livelihoods. #### **Course Outcomes** | COs | Upon completion of this course, students will be able to: | PSO
addressed | CL | |------|--|------------------|---------| | CO-1 | Recall or remember concept of ethnobotany. | PSO-1 | K1 | | CO-2 | Understand the life style and traditional practices of plants by Indian tribals. | PSO-2 | K2 & K6 | | CO-3 | Highlight the role of Non- Timber Forest products for livelihood of tribal people of India | PSO-3 | K3 | | CO-4 | Assess the methods to transform ethnobotanical knowledge into value added products. | PSO-3 | K4 | | CO-5 | Build idea to make digitization of ethnobotanical knowledge. | PSO-3 | K5 | # Teaching plan # Total Contact hours*: 75 (Including lectures, assignments and tests) | Unit | Module (Minimum 5 to Maximum 10 modules are permitted) | Topic | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | |------|--|--|-------------------|---------------------|--------------------|--|---| | I | | | | | | • | ı | | | 1 | Concept, important landmarks in the development, scope, disciplines of ethno botany. | sub 3 | 1 | K2(U) | Lecture using Chalk
and talk, Brain
Storming | Participative
Learning- Team
Teaching | | | 2 | Interdisciplinary approaches. | 3 | | K1(R) | Cooperative
learning- Group
Discussion | Participative
Learning-
Assignment | | | | Т Т | | \neg | | | | |-----|---|--|---|--------|---------|---|--| | | | Knowledge of following sociological and anthropological terms | | | | | | | | 3 | Culture, values and norms, institutions, culture diffusion and ethnocentrism. | 3 | 1 | K3(Ap) | Reflective
Thinking, Blended
Learning | Collaborative
learning- Rural
camp | | | 4 | History of ethnobotany: A brief history of ethno botanical studies in the world and in India. | 4 | | K4(An) | Lecture using videos, Brain Storming | Participative
Learning- Flow
Chart Analysis | | П | 1 | Distribution of tribes in India. | 3 | 1 | K2(U) | Inquiry based
approach, Brain
Storming | Participative
Learning-
Describing
visual images | | | 2 | Basic knowledge of
following tribes of Tamil
Nadu: Irulas,
Kanis, | 4 | | K 3(Ap) | Simulation based
approach, Lecture
Method | Participative
Learning- Role
play | | | 3 | PaliyarsBadagas,
Kurumbres, | 3 | 1 | K1(K) | Integrative
Teaching,
Demonstrative | ParticipativeLea
rning- Skit | | | 4 | Thodas and Malayalis. Plants used by tribals of Tamil Nadu. | 3 | | K4(An) | Embodied
Learning, Brain
Storming |
Participative
Learning-
Album making | | III | 1 | Primary - archeological sources and inventories, Secondary - travelogues, folklore and literary sources. | 3 | 1 | K2(U) | Brain Storming,
Lecture Method | Participative
learning- Group
discussion | | | 2 | Herbaria, medicinal texts
and official records.
Methods in
ethnobotanical research | 3 | | K 3(Ap) | Reflective
Thinking,
Demonstrative | Participative
learning-
Preparing
herbaria exhibit | | | 3 | Prior Informed Consent, PRA techniques, interviews and questionnaire methods, choice of resource persons | 3 | 1 | K1(K) | Blended Learning,
Collaboration | Participative
Learning- case
study | | | 4 | Folk taxonomy – plants
associated with culture and
socio- religious activities | 2 | | K4(An) | Integrative Teaching, Lecture Method | Participative
Learning- Panel
discussion | | | 5 | Non – timber forest
products (NTFP) and
livelihood – Sustainable
harvest and value
addition. | 2 | 1 | K5(E) | Simulation based approach | Experiential learning-
Arranging exhibition | | IV | 1 | Role of plants in naturopathy- Importance and relevance of medicinal drugs in India. | 2 | 1 | K2(U) | Co-operative
Learning, Lecture
Method | Participative
Learning-
Memory game | | | 2 | Indian Systems of Medicine (Ayurveda, Siddha, Allopathy, Homeopathy, Unani, Tibetan, Yoga and Naturopathy) | 2 | | K 3(Ap) | Reflective
Thinking, Brain
Storming | Participative
Learning-
Interaction in
the classrooms | | | 3 | Disease diagnosis,
treatment, and cure using
natural therapies including
dietetics, botanical
medicine, homeopathy,
fasting, exercise, lifestyle
counseling, detoxification,
and chelation | 2 | 1 | K1(K) | Simulation based
approach, Lecture
Method | Experiential
Learning-
Demonstration | |---|----|---|---|---|---------|--|---| | | 4 | clinical nutrition,
hydrotherapy,
naturopathic manipulation,
spiritual healing,
environmental assessment, | 2 | | K2(U) | Integrative Thinking, Lecture method | Participative
learning-
Assignment | | | 5 | Health practices,
approaches, knowledge
and beliefs incorporating
plant, animal and mineral
based medicines, spiritual
therapies. | 2 | 1 | K 3(Ap) | Inquiry based
approach, Flipped
Classrooms | Participative
learning- panel
discussions | | | 6 | manual techniques and exercises, applied singularly or in combination to treat, diagnose and prevent illnesses or maintain | 2 | | K1(K) | Blended Learning,
Lecture Method | Experiential
learning- Field
viit | | V | 1. | Bioprospecting of drug
molecules derived from
Indian traditional plants. | 3 | 1 | K2(U) | Brain Storming,
Lecture Method | Participative
Learning- Role
play, Mind map | | | 2. | Methods for bioprospecting of natural resources | 3 | | K 3(Ap) | Reflective Thinking, Demonstrative | Participative
Learning- Chart | | | 3. | From folk Taxonomy to
species confirmation -
evidences based on
phylogenetic and
metabolomic analyses | 3 | 1 | K1(K) | Blended Learning,
Collaboration | Experiential
Learning- Poster
presentation | | | 4. | Ethno botanical databases
and Traditional knowledge
Digital Library (TKDL). | 3 | | K4(An) | Integrative Teaching, Lecture Method | Participative Learning- Online Assingment | Activities (Em / En /SD): Field visit, Poster presentation Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - #### **Environment Sustainability** Activities related to Cross Cutting Issues: Collection of Medicinal herbs from Tribal Areas Assignment: Herbaria, medicinal texts and official records. Methods in ethnobotanical research Seminar Topics: Bioprospecting of drug molecules derived from Indian traditional plants #### Part A (1 mark) - 1. The word "ethno" in ethnobotany refers to ? (K1-R, CO-1) - a. region- locality- people b. culture c. civilization d. all of above - 2. The concept and idea of greeks that walnut could be used to heal ailments of the human brain is known as? (K1-R, CO- - a. doctrine of signatures b. doctrine of homeopathy c. doctrine of Allelopathy d. None of these - 3. The cereals belong to the family ? (K2-U, CO-2) - a. Fabaceae b. Poaceae c. Solanaceae d. Rosaceae - 4. The search for previously unknown compounds in organisms that have been never used in traditional medicines is **(K2-U, CO-4)** - a. Molecular farming b. Bioremediation c. Biopiracy d. Bioprospecting - 5. The Siddha science is a traditional treatment system generated from (K1-R, CO-5) - a. Indian b. Tamil c. Kerala d. Maharastra Part B (6 marks) - 1. Write the botanical name, family, important plant part and traditional uses of 'Ashwagandha'. (K2-U, CO-1) - 2. Differentiate between Ethnobotany and Economic botany. (K3-Ap, CO-2) - 3. Explain the ethnomedicinal uses of *Janakiaarayalpatra*. (K2-U, CO-2) - 4. Differentiate Ayurvedic pharmacopoeia from pharmacology. (K3-Ap, CO-3) - 5. Explain the importance of phyto-pharmacological screening in herbal drug development. (**K2-U, CO-5 Part C (12 marks)** - 1. Analyze the history of ethnobotany. (K4-An, CO-1) - 2. Discuss about the tribes of Tamilnadu. (K1-R, CO-2) - 3. Evaluate the importance of folk taxonomy. (K5-Ev, CO-3) - 4. List out the traditional healthcare practices. (K3-Ap, CO-4) - 5. Summarize hydrotherapy. (**K4-An, CO-5**) Head of the Department Dr. Sr. P. Leema Rose Course Instructor Dr.W.Vincy Class : I M.Sc. Botany Title of the Course : CORE COURSE VI: CELL AND MOLECULAR BIOLOGY Semester : III Course Code : BP233CC1 | Course Code | Code L T P S Credits Ins | | Inst. Hours | Total | Marks | | | | | | |-------------|--------------------------|---|-------------|-------|-------|---|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | BP233CC1 | 4 | 2 | - | - | 5 | 6 | 90 | 25 | 75 | 100 | # Objectives: - 1. To understand the cell division and its molecular mechanism so as to appreciate and manipulate normal and abnormal cell and tissue growth. - 2. A thorough examination of DNA structure, replication process, transcription process and translation processes. #### **Course outcomes** | | On completion of this course, the students will be able to: | PSO addressed | Cognitive level | |-------|---|---------------|-----------------| | CO | | | | | CO -1 | understand the scope and importance of population ecology, plant communities and ecosystem ecology. | PSO- 1 | K1& K2 | | | understand the applied aspect of environmental botany. | PSO-2 | K1&K4 | | CO -2 | | | | | GO 2 | students will spot the sources and pollution and seek remedies to mitigate and rectify them. | PSO-3 | K2& K6 | | CO -3 | , | | | | CO -3 | identify different plant communities, categorize plant biomes and identify threatened, endangered plant species and create awareness program in protection of | PSO-4 | K3& K6 | | | biodiversity. | | | | CO -4 | analyze insight into the vegetation types, species interaction and their importance and the factors influencing the environmental conditions. | PSO-5 | K5 | # Teaching plan Total Contact hours: 90 (Including lectures, assignments and tests) | Uni
t | Modul
e | Торіс | Teachi
ng
Hours | Assess
ment
Hours | Cogniti
ve level | Pedagogy | Student
Centric
Method | E-Resources | Evaluatio
n
Methods | |----------|------------|--------------------------------------|-----------------------|-------------------------|---------------------|--|---|------------------------|-------------------------------| | 1 | 1 | Concept of prokaryote and Eukaryote. | 3 | 1 | | Introductory
lecture, Lecture
using Chalk and
talk, Brain
Storming | Participative
Learning-
Brainstormi
ng | E-content –
MS Word | Album preparatio n, slip test | | | | | |] | K1(R) | | | | | |----|---|--|---|---|--------|--|---|--|--| | | | | | | Tr(tr) | | | | | | | 2 | Structural organization of plant cell, specialized plant cell types chemical foundation. | 3 | | K1(R) | Context based, lecture method | Participative
Role Play,
using visual
images | Interactive
PPT | MCQ,
homewor
k | | | 3 | Cell wall- Structure
and
functions | 3 | 1 | K1(R) | Blended
Learning,
Demonstrative | Experiential
learning-
making
models | Youtube
videos | Formative
assessmen
t, Class
test | | | 4 | Plasma membrane;
structure, models
and functions, site
for ATPase, ion
carriers channels
and pumps,
receptors. | 3 | | K2(U) | Reflective
thinking,
Simulation | Participative
Learning-
team
teaching | E-Content-
MS Word | Online
assessmen
t and quiz
questionin
g in the
classroom | | | 5 | Plasmodesmata
and its role in
movement of
molecule. | 3 | 1 | K2(U) | Simulation | Experiential
Learning-
PowerPoint
presentation | Self directed
active
learning | Slip
Test,
online
Assignme
nt, oral
test, Ed
puzzle | | II | 1 | Chloroplast-
structure and
function, | 3 | 1 | K1(R) | Reflective
thinking,
braistorming | Experiential
Learning-
model
making | E content-
MS Word,
Interactive E-
Book | Conceptu
al MCQs,
Flip grid,
oral rest | | | 2 | genome orga nization, gene expression, | 3 | 1 | K2(U) | Flipped
classroom,
Simualtion | Participative
learning-
Describing
visual
images | Self prepared
videos, E-
content –
external links | Preparatio
n of
question
bank by
students,
CIA 1 | | | 3 | Mitochondria;
structure, g
enome
organization,
biogenesis. | 3 | | K3(Ap) | Demonstrative,
lecture method,
comparative
charting | Group Discussion, Peer Teaching, Mind Mapping, Specimen Observation | Interactive
PPT, E-
Content-
external links | Multiple
Choice
Questions
(MCQs),
Short
Answer
Questions | | | | | | | | | | | Matching
Exercises | |-----|---|--|---|---|---------|---|---|---|--| | | | | | | | | | | | | | 4 | Plant Vacuole - Tonoplast membrane, ATPases transporters as a storage organelle. | 3 | 1 | K3(Ap) | Lecture
Method,Chalk
and Talk,
Diagrammatic
Explanation | Participative Learning- Group Discussion, Peer Teaching, Concept Mapping | PowerPoint Presentation, YouTube Lecture Clips, Virtual Microscopy | MCQ
quiz, short
answers,
diagram
labeling | | | 5 | and function of other cell organelles- Golgi apparatus, lysosomes, endoplasmic reticulum | 3 | | K4(An) | Lecture method,
comparative
analysis,
demonstration,
model-based
teaching,
experiential
learning | Participative Learning- Group discussion, chart preparation, peer explanation, specimen observation, group presentation, case study | PowerPoint presentations, life cycle animations, microscopic images, virtual lab simulations, | MCQs,
short
answer
test, oral
questionin
g,
worksheet
activity,
google
forms | | III | 1 | microbodies. Nucleus: Structure and function, nuclear pore, Nucleosome organization, euchromatin and heterochromatin. | 4 | 1 | K1 (R) | | Participative learning- group discussion, collaborativ e chart preparation. | PowerPoint presentations, classification videos, smartboard diagrams. | Quiziz, open book test, online assignmen t, MCQ test, short answer writing, oral quiz, diagram labelling | | | 2 | Ribosome-
Structure and
functional
significance.
RNA
and DNA
Structure. A,
B and Z
Forms. | 2 | | K4 (An) | | Participative learning- Group discussion, peer teaching, collaborativ e chart making, case study analysis | PowerPoint presentations, YouTube videos | Evaluatio
n through
s
hort test,
Seminar | | | 3 | DNA dam age and repair (Th ymine dimer, photoreactivat ion, excision repair). Cell cycle and | 3 | 1 | K4 (An) | Integrative
Teaching, | Experiential Learning- Group discussion, concept mapping, model making, chart preparation Experiential Learning- | Animated videos, PowerPoint presentations E-content, MS Power | Definition
s, MCQ,
Recall
steps,
Google
forms | |----|---|--|----------|---|---------|--|---|--|--| | | 4 | Apoptosis; Control mechanisms. | | | K4(An) | Lecture Method | Mind map | point | Concept
definitions | | | 5 | Cytokinesis and cell plate formation, mechanisms of programmed cell death. | 3 | 1 | K3(Ap) | Simulation
based approach | Experiential
learning-
Sales day | E-content MS
Word, Google
classroom | MCQs,
short
answer
test,
oral
questio
ning,
worksh
eet
activity
,
google
forms | | IV | 1 | DNA r eplication (prokaryotes) and eukaryotes), enzymes involved in replication, DNA repair. DNA | 3 | 1 | K1(R) | Lecture method,
comparative
study approach,
concept
mapping, visual-
based teaching | Participative learning- group discussion, collaborativ e chart preparation | E-content,
MS Power
point | MCQ
test,
short
answer
writing,
oral
quiz,
diagram
labelling | | | 2 | Transcription, enzymes involved in transcription, | 3 | | K2(U) | Lecture method, interactive discussion, concept explanation using analogies, comparative approach | Participative
learning-
Group
discussion,
peer
teaching | E-content-
MS Word,
Google
classroom | Short answer question s, compara tive tables, diagram labeling, group assignm ents, formativ e MCQs | | | 3 | post tran scription changes, reverse | 4 | 2 | K3(Ap) | demonstration,
comparative
analysis,
specimen-based
teaching | Experiential Learning- Group discussion, model making, | PowerPoint
presentations,
classification
videos | Quiz,
short
answer
test,
diagram
labeling,
Google
forms | | V | 4 | Translation. overlapping genes. DNA/gene | 4 | 1 | K4(An) | Inquiry based teaching, simulation | chart preparation Experiential Learning-Mind map | Animated videos, PowerPoint presentations, virtual microscope tools | Quiz, diagram labeling, short answer question s, group, CIA II. Online assignm ent MCQ | |---|---|--|---|---|--------|--|---|---|--| | | 1 | manipulating enzymes: endonuclease, ligase, po lymerase, phosphatase, transcriptase, transferase, topoisomerase. | 3 | | K3(Ap) | demonstration method, inquiry- based learning, concept explanation using examples. | Learning-
Group
discussion,
pair-share
activity,
concept
mapping,
poster
making,
student
seminar. | presentations, YouTube educational clips, virtual lab resources | test, oral question ing, concept map evaluati on, poster display assessm ent. | | | 2 | Gene cloning:
cloning vectors,
molecular
cloning and DNA
libraries,
transposons. | 3 | 1 | K4(Ap) | Lecture method,
demonstration
method | Participative Learning- Group discussion, peer learning, collaborativ e projects, case study analysis, hands-on experiments | PowerPoint presentations, educational videos, virtual lab simulations, interactive animations, eresources and online articles | MCQs,
short
answer
tests | | | 3 | Recombinant
DNA. Direct and
indirect gene
transfer. | 3 | | K5(Ev) | Lecture method,
demonstration
method,
activity-based
teaching | Experiential Learning- Group discussion, poster presentation | PowerPoint
presentations,
virtual lab
simulations | MCQ
tests,
short
answer
s | | | 4 | Detection of recombinant molecule, production of gene products from cloned genes. | 3 | 1 | K4(Ap) | Lecture method,
inquiry-based
learning,
concept
explanation | Participative
Learning-
Group
discussion,
model
making | PowerPoint
presentation,
YouTube
videos | Quiz,
concept
map
submis
sion | | | Genome library, | | | Lecture method, | Participative | PowerPoint | MCQs, | |---|-----------------|---|--------|-----------------|---------------|-----------------|--------| | 5 | cDNA | 3 | K5(Ev) | comparative | Learning- | presentations, | short | | | | | | teaching, | Group | Youtube | and | | | library. | | | interactive | discussion, | videos, virtual | long | | | J | | | teaching. | peer | herbarium | answer | | | | | | _ | presentation | | tests. | | | | | | | | | | | | | | | | | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development, Entrepreneurship Activities (Em/En/SD): Model making - cell organelles Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): **Environment Sustainability** Activities related to Cross Cutting Issues: Field visit Assignment: Genome library, cDNA library./online Seminar Topic: DNA replication. # Sample questions (minimum one question from each unit) Part A - 1. What is a cell? (K1-R,CO-1) - a) smallest and advanced unit of life b) smallest and basic unit of life - b) largest and basic unit of life d) largest and advanced unit of life - 2. Which of the following is a functional unit of a body?(K1-R, CO-1) - a) Mitochondria b) Cytoplasm c) Spleen d) Cell - 3. Which of the following is known as the powerhouse of a cell?(**K2-U**, **CO-2**) - a) Mitochondria b) Cytoplasm c) Lysosome d) Nuclei - 4. DNA is stored in which of the following cell organelle?(K4-An. CO-3) - a) Cell wall b) Cell Membrane c) Nucleus d)
Cytoplasm - 5. Protein synthesis takes place in which of the following cell organelle?(K4-An, CO5) - a) Cell wall b) Ribosome c) Nucleus d) Cytoplasm #### Part B - 1. Write short note on Plasmodesmata and its role in movement of molecule.(K2-U, CO-1) - 2. Enlist the characters of ATPases transporters.(K4-An, CO-4) - 3. Differentiate euchromatin and heterochromatin.(K3-Ap, CO-3) - 4. Criticize on DNA sequencing.(K4-An, CO-3) - 5. Enlist the cloning vectors used in recombinant DNA Technology .(K4-An, CO-4) ## Part C - 1. Evaluate the structure, models and functions Plasma membrane. (K4-An, CO-4). - 2. Illustrate the Chloroplast-structure and function.(K3-Ap, CO-3) - 3. Discuss the structure and function of Ribosome. (K4-An, CO-4) - 4. Illustrate the process of DNA replication. (K3-Ap, CO-3) - 5. Explain direct and indirect gene transfer methods in prokaryotic cell.(K1-U, CO-2) **Head of the Department** **Course Instructor** Dr. Sr. P. Leema Rose Dr. J.Celin Pappa Rani Department :Botany Class : II M.Sc. Botany Title of the Course : GENETICS, PLANT BREEDING AND BIOSTATISTICS Semester : III Course Code : BP233CC2 | Course Code | L | Т | P | S | Credits | Credits Inst. Hours | | Marks | | | | |-------------|---|---|---|---|---------|---------------------|-------|-------|----------|-------|--| | | | | | | | | Hours | CIA | External | Total | | | BP233CC2 | 4 | 2 | _ | _ | 5 | 6 | 90 | 25 | 75 | 100 | | ## **Learning Objectives:** - 1. The students will be able to have conceptual understanding of laws of inheritance, genetic basis of loci and alleles and their linkage. - 2. Develop critical understanding of chemical basis of genes and their interactions at population and evolutionary levels. ## **Course Outcomes** | ('()-1 | nderstand the Mendal's Law of inheritance and gene | PSO-1 | T7.1 (T7) | |---------|--|-------|-------------------| | int | teractions | 150 1 | K1 (K) | | CO-2 | nalyse the various factors determining e heredity from one eneration to another. | PSO-2 | K2 (U) | | CO-3 Ex | xplain Gene mapping methods: Linkage maps. | PSO-3 | K3 (AP) | | (()_4 | ompare and contrast the genetic basis of breeding self and oss – pollinated crops. | PSO-3 | K4 (AN) | | CO-5 | iscuss and develop skills for
atistical analysis of biological problems | PSO-3 | K5 & K6(C &
E) | ## Teaching plan ## Total Contact hours*: 90 (Including lectures, assignments and tests) dihybrid ratios. | Unit | Module (Minimum 5 to Maximum 10 modules are permitted) | | Topic | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Stu
Cer
Mer | |------|--|-------|--|-------------------|---------------------|--------------------|--|----------------------------------| | I | | | | | | | | | | | 1. | inher | dal's Law of itance. Gene actions and modified | 3 | 1 | K2(U) | Lecture using Chalk
and talk, Brain
Storming | Participa
Learning
Teachin | Checker | | | T | Γ | | | T -: . | 1 | |-----|----|--|---|---|---------|--|--| | | 2. | Quantitative inheritance. Sex determination in plants and theories of sex determination. | 3 | | K 3(Ap) | Cooperative
learning- Group
Discussion,
Reflective Thinking | Particip
Learnin
Demons
Role Pla | | | 3. | Sex linked characters. Structure of Gene, Operon, inducible operon, Operator site, Promoter, Polycistronic m RNA, Regulator, regulator constitutive. | 3 | 1 | K1(K) | Reflective
Thinking, Blended
Learning | Collabo
learning
Assignm | | | 4. | Gene function and regulation in prokaryotes with reference to Lac operon and trp operon. | 2 | | K4(An) | Lecture using videos, Brain Storming, Integrative Teaching | Particip
Learnin
Chart A | | | 5. | Producergene , structural gene and integrator gene. Gene Regulation eukaryotes —Britten and Davidson model. | 2 | 1 | K5(E) | Embodied Learning,
Lecture Method | Experie
Learnin
Making | | | 6. | Arabidopsis- gene regulation in flowering. | 2 | | K2(U) | Reflective Thinking,
Simulation based
approach | Particip
Learnin
discussi | | П | 1. | Recombination: Homologous and non-homologous recombination, site- specific recombination. | 3 | 1 | K2(U) | Inquiry based
approach, Brain
Storming | Particip
Learnin
Creating
solving | | | 2. | Holiday model of recombination. Transposable genetic elements: transposase, transposon, simple transposon, composite transposon. | 3 | | K 3(Ap) | Simulation based
approach, Lecture
Method | Experie
Learnin
Making | | | 3 | Transposons in <i>Zea mays</i> . Transposable elements in prokaryotes. | 3 | 1 | K1(K) | Integrative
Teaching,
Demonstrative | Experie
Learnin
making | | | 4 | UV induced mutation and its repair mechanism. Mismatch DNA repair mechanism. | 3 | 1 | K4(An) | Embodied
Learning, Brain
Storming | Particip
Learnin
presenta | | | 5 | Mutation types- frame shift mutation, addition, deletion, substitution, transition and transversion. | 3 | | K5(E) | Blended Learning,
Gamification | Particip
Learnin
presenta | | III | 1 | ABO blood group in humans. | 4 | 1 | K 3(Ap) | Brain Storming,
Lecture Method | Particip
learning
Demons
of Expe | | | | | | | | 1 | 1 | |----|----|--|---|---|---------|---|--| | | 2 | QTL mapping, Gene mapping methods: Linkage maps, tetrad analysis | 4 | | K1(K) | Reflective Thinking, Demonstrative | Particip
learning
making | | | 3 | mapping with molecular markers | 4 | 1 | K3(Ap) | Simulation based
approach, Lecture
Method | Experie
Learnin
Making | | | | mapping by using somatic cell hybrids. | | | | | | | | 4 | Extra chromosomal inheritance, maternal inheritance. | 3 | 1 | K4(An) | Blended Learning,
Collaboration | Experie
Learnin
presenta | | IV | 1 | Objectives of plant breeding, characteristics improved by plant breeding. | 3 | 1 | K4(An) | Co-operative
Learning, Lecture
Method | Particip
Learnin
Demons
of exper | | | 2 | Genetic basis of breeding self and cross – pollinated crops. | 3 | 1 | K5(E) | Reflective Thinking, Brain Storming, Lecture Method | Particip
Learnin
Interact
the class | | | 3 | Pure line theory, pure line selection and mass selection, | 3 | | K2(U) | Simulation based
approach, Lecture
Method, Reflective
Thinking | Experie
Learnin
Presenta | | | 4 | clonal selection methods.
Hybridization. | 3 | 1 | K 3(Ap) | Integrative Thinking, Gamification | Particip
learning
Demons
of exper | | | 5 | Genetics and physiological basis of heterosis. | 3 | | K1(K) | Inquiry based
approach, Flipped
Classrooms | Particip
learning
map | | V | 1. | Measures of central
tendency (Mean, Median, Mode) | 3 | 1 | K2(U) | Brain Storming,
Lecture Method | Problem
methodo | | | 2. | Dispersal (Mean deviation, standard deviation), standard errors ANOVA (One way). | 3 | | K 3(Ap) | Reflective
Thinking,
Simulation based
approach | Problem
methodo
solving
problem | | | 3. | Sampling distribution;
levels of significance; | 3 | 1 | K1(K) | Blended Learning,
Collaboration | Problem
methodo
Researc | | | 4. | Regression and correlation; | 3 | | K4(An) | Integrative
Teaching, Lecture
Method | Problem methodo solving problem | | | 5. | t-test; analysis of variance;
X2 test. | 3 | 1 | K4(An) | Simulation based approach | Problem
methodo
Researc | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Chart Presentation, Problem solving Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Environment Sustainability** Assignment: Producer gene, structural gene and integrator gene. Gene Regulation eukaryotes -Britten and Davidson model. Seminar Topics: Measures of central tendency (Mean, Median, Mode) #### Part A (1 mark) - 1. What is the structural unit of a gene? (K1-R, CO-1) - a.Exon b. Intron c. both a&b - d. None of these - 2. In a dihybrid cross, the phenotypic ratio of 9:3:3:1 represents ____inheritance. (K1-R, CO-1) - 3. According to the Britten and Davidson model, what are gene batteries? (K2-R, CO-3) - a. Genes regulating metabolism b. Genes regulating development - c. Sets of coordinately regulated gene d. Genes involved in energy production - 4. QTL mapping is used to identify _____associated with quantitative traits. (K1-R, CO-4) - 5. Maternal inheritance is often associated with which type of genetic material? (K1-R, CO-1) - a. Nuclear DNAb. Chloroplast DNA c. Mitochondrial DNA d. Both B and C - 6. Transposable elements in Zea mays are also known as genes. (K2-U, CO-4) - 7. Heterosis is also known as -----(**K1-R, CO-4**) - 8. The mean is a measure of central _____, while standard deviation is a measure of ____. (K1-R, CO-5) #### Part B (6 marks) - 1. Describe Mendel's Law of Segregation with an example (K1-R, CO-1) - 2. Interpret the basic structure of a gene and its components (K3-Ap, CO-2) - 3. Predicting the role of transposase in the mobility of transposable elements.? (K3-Ap, CO-2) - 4. Describe the principle of QTL mapping and its applications in plant breeding? (K1-R, CO-4) - 5. Highlight the ABO blood group system in human health and medical practice. (K5-An, CO-1) - 6. Role of pure
line selection in breeding justify (K1-R, CO-4) - 7. Illustrate the genetic basis of breeding in self-pollinated crops. (K5-E, CO-4) - 8. Categorize the measures of central tendency and their significance in statistical analysis (K3-Ap, CO-5) - 9. Analyze the types of correlation & its advantages (K4-An, CO-5) #### Part C (12 marks) - 1. Summarize sex determination in plants and discuss various theories of sex determination. (K1-R, CO-1) - 2. Compare and contrast homologous recombination and non-homologous recombination. (K3-Ap, CO-2) - 3. Classify the methods of gene mapping with molecular markers. Include examples of markers used. (K1-R, CO-1) - 4. Determine the genetic and physiological basis of heterosis, including its application in plant breeding.? (K1-R, CO-4) - 5. Calculate and interpret the mean, median, mode, standard deviation, and mean deviation for the following data set: [5, 8, 12, 15, 18, 22, 26) (K1-R, CO-5) - 6. Illustrate the use of one-way ANOVA in comparing means with a detailed example and interpretation of results. (K1-R, CO-4) Department : Botany Class: II M.Sc. Botany Title of the course: CORE LAB COURSE III: CORE COURSE VI and VII Semester: III Course code: BP233CP1 buds). | Course Code | I. | Т | p | S | Credits | Inst. Hours | | Marks | | | |-------------|----|---|---|---|---------|-------------|-------|-------|----------|-------| | Course Coue | L | 1 | 1 | 3 | Cicuits | inst. Hours | Hours | CIA | External | Total | | BP233CP1 | | - | 6 | - | 5 | 6 | 90 | 25 | 75 | 100 | # **Learning Objectives:** - 1. Observe the different stages of mitosis and chromosome behaviour and organization during various stages and to learn staining techniques of various plant tissues. - 2. Understand the principles of rDNA techniques. ## **Course outcomes** | On co | ompletion of this course, the students will be able to: | | |-------|---|-------| | 1. | recall or remember the various aspects of cell biology, genetics, molecular biology, plant breeding and tissue culture. | K1 | | 2. | understand various concepts of cell biology, genetics, plant breeding and tissue culture. | K2 | | 3. | apply the theory knowledge gained into practical mode in order to acquire applied knowledge by day-to-day hands-on experiences. | К3 | | 4. | analyze or interpret the results achieved in practical session in the context of existing theory and knowledge. | K4 | | 5. | evaluate the theory and practical skills gained during the course. | K5 &K | # Teaching plan # Total Contact hours*: 90 (Including lectures, assignments and tests) | Unit | Торіс | Teachin
g
Hours | Assessm
ent
Hours | Cognitiv
e level | Pedagogy | Student Centric
Method | E-
Resources | Asser
Eval
Me | |------|--|-----------------------|-------------------------|---------------------|---|--|--|--| | 1 | CELL AND MOLECULAR BIOLOGY 1.Identification of different stages of mitosis from suitable plant material. (Onion root tips/ garlic root tips). 2.Identification of meiosis from suitable plant material. (Onion /Tradeschantia floral | 15 | 3 | K3(Ap) | Experiential
learning,
Demonstratio
n method,
Practical-
based
teaching | Experiential
learning- Hands-
on laboratory
sessions, Group
experiments,
Observation and
reporting | Virtual lab
simulations,
Microscopy
video
tutorials,
Animation
of mitosis
and meiosis,
PPTs and e-
modules,
Recorded
demonstrati
on videos | Lab re
evalua
Practi
exam,
Obser
sheet
submi | | | | Т | | | т | т | | | |----|--|----|---|--------|---|---|---|--| | | 3.Isolation of cell organelles: Mitochondria, Chloroplast, Nucleus, Lysosomes (Demo 4.Study of mitotic index from suitable plant material. | | | | | | | | | п | 1.To study plant vacuole in cells of onion leaf peel. 2.Restriction digestion of DNA samples using restriction endonucleases 3.To study the structure and organization of plant cell in various tissues of various plants (incl. leaf, stem and roots). | 15 | 3 | K4(An) | Experiential learning-demonstration method, collaborative learning | Hands-on experiments, microscopic observations, peer discussions, group projects, model preparation | Virtual lab simulations, animation videos of cell structure and DNA digestion, interactive diagrams. | Lab re
rubric
evalua
practio
skills | | Ш | 1.Problem solving on dihybrid phenotypic, genotypic and test cross ratios. 2.Incomplete dominance in plants. 3.Interactions of factors and modified dihybrid ratios. 4.Multiple alleles in plants, blood group inheritance in human. 4.Sex linked inheritance in Drosophila and plants. Quantitative inheritance in plants. | 15 | 3 | K3(Ap) | Lecture method, concept mapping, comparative analysis, interactive, problembased approach | Group discussions, collaborative worksheet solving, inquiry-based learning, flipped classroom | Animations
on
Mendelian
genetics,
virtual
genetics lab
simulations,
PPT with
Punnett
square
illustrations,
interactive
quizzes-
Kahoot | MCQs
proble
solvin
works
concej
applic
questi-
group
presen
peer
evalua
short a
tests, o
quizze | | IV | 1.Chromosome mapping from three-point test cross data. Calculation of chiasmatic interference. 2. Calculate gene and genotypic frequency by Hardy- Weinberg equation. | 15 | 3 | K4(An) | Problem-
based
learning,
Inquiry based
learning | Group activity
using sample
genetic data,
Hands-on
numerical
solving in pairs-
human genetics | Animation
videos,
interactive
simulation
tools for
crossing
over, PPTs,
online
calculators,
gamified | Works
solvin
MCQ
Online
conce
creation | | | | | | | | | genetic
models | | |---|---|----|---|--------|---|--|--|---| | V | PLANT BREEDING 1. Techniques in plant hybridization. | 15 | 3 | K3(Ap) | Demonstratio
n method,
experimental
learning | Group
discussion, field
visits, hands-on
training | PPTs,
Youtube
videos,
animations,
virtual lab
simulations,
e-modules | MCQs
Praction
record
evaluat
Format
assess | Total Teaching hours include 15 hours allotted for Formative and Summative Assessments Course Focussing on Employability/ Entrepreneurship/ Skill Development : **Employability**, **Skill Development** Activities (Em/ En/SD): **Model making** Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Environment Sustainability Activities related to Cross Cutting Issues: Field visit Assignment: Genetics problems Sampl e questi ons - 1. Carry out the cytological preparation and staining of the given material **A** and report any one stage of cell division (Meiosis/Mitosis). (1X 10 = 10 marks). - 2. Conduct the experiment B allotted to you and write the procedure. (1X 7 = 7 marks) - 3. Make suitable micro preparation of C. Identify giving reasons, draw labelled diagrams and submit the slide for valuation. (1X7= 7 marks) - 4. Solving genetic problems D related dihybrid ratio / interaction of genes. (1X 10 = 10 marks) - 5. Identify the Blood group E and interpret your results, draw labelled diagrams and submit the slide for valuation. $(1X\ 10=10\ marks)$ - 6. Calculation of chromosome mapping from three-point test cross data F $(1X\ 10 = 10 \text{ marks})$ - 7. Calculate gene and genotypic frequency by Hardy-Weinberg Equilibrium. G (1X 10=10 marks) - 8. Spotters H, I (2X 3 =6 marks) - 9. Submission: Record note book 5 Head of the Department Dr. Sr. P. Leema Rose Course Instructor Dr. S.Kala Vetha Kumari Department : Botany Class : II M.Sc. Botany Title of the Course : ENTREPRENEURIAL OPPORTUNITIES IN BOTANY Semester : III Course Code : BP233EC1 content of various fertilizers. | Course Code | L | Т | P | S | S Credits | Inst. Hours | Total | Marks | | | | |-------------|---|---|---|---|-----------|-------------|-------|-------|----------|-------|--| | Course Coue | | | | | | | Hours | CIA | External |
Total | | | BP233EC1 | 4 | - | _ | - | 3 | 4 | 60 | 25 | 75 | 100 | | **Learning Objectives:** - **1.** Understand the different classifications of horticultural crops, nursery management, and use of technology in horticulture. - 2. Evaluate the importance of floriculture and contribution spices and condiments on economy. ## **Course Outcomes** | COs | Upon completion of this course, students will be able to: | PSO
addressed | CL | |------|--|------------------|---------| | CO-1 | Students can acquire knowledge about organic farming and their advantages | PSO-1 | K1 | | CO-2 | Understand both the theoretical and practical knowledge in understanding various horticultural techniques. | PSO-2 | K2 & K6 | | СО-3 | To develop kitchen garden or terrace garden in their living area. | PSO-3 | К3 | | CO-4 | Evaluate the horticultural techniques to students can develop self-employment and economical improvement. | PSO-3 | K4 | | CO-5 | Create and develop skills for mushroom cultivation. | PSO-3 | K5 | ## **Teaching plan** # Total Contact hours*: 60 (Including lectures, assignments and tests) | Unit | Module | Topic | | Teaching
Hours | | Asse
ssme
nt
Hou
rs | Cog
nitiv
e
level | Pedagogy | Student
Centric
Method | E-
Resource
s | Assessment/
Evaluation
Methods | |------|--------|--|--|-------------------|--|---------------------------------|----------------------------|-------------------------------|--|--|--------------------------------------| | I | | | | | | | | | | | | | | 1. | Organic manures and
fertilizers.
Composition of
fertilizer, NPK | | 3 | | 1 | K2(
U) | Lecture using Chalk and talk, | Participat
ive
Learning-
Team | Interactiv
e PPT, E-
content
MS | MCQ, Qui
Open book test | Brain Storming Teaching, Sales day Power point | | | T ~ | | 7 | | · · | I | 1 | | |----|----|--|---|---|------------|---|--|---|--| | | 2. | Common organic manures bone meal, cow dung, poultry waste, oil cakes, organic mixtures and compost. | 3 | | K1(
R) | Cooperati ve learning- Group Discussion , Reflective Thinking | Participat
ive
Learning-
Demonstr
ating
exhibit | You tube
videos,
GAMMA
PPT | Online Quiz-
Google Forms,
Just a Minute | | | 3. | Preparation of compost, aerobic and anaerobic – advantages. | 2 | 1 | K3(Ap) | Reflective
Thinking,
Blended
Learning | Collabora
tive
learning-
Mind
mapping, | E-
content-
MS
Word,
Interactiv
e PPT | Open book Tes
MCQ, Online
Asingment | | | 4. | Vermicompost preparation, Panchakaviyam. | 2 | | K4(
An) | Lecture using videos, Brain Storming, Integrative Teaching | Participat
ive
Learning-
Demonstr
ation of
Experime
nts | Interactiv e PPT, Discussio n Forum- Google Classroo m | Slip Test,
Unnounced
Test, Oral
presentation | | II | 1. | Common garden tools. | 2 | 1 | K2(
U) | Inquiry
based
approach,
Brain
Storming | Experient ial Learning-Interaction in the classroom | You tube
videos,
Econtent-
MS Word | Class test, Ope
book test | | | 2. | Methods of plant propagation by seeds. | 2 | | K
3(Ap | Simulatio
n based
approach,
Lecture
Method | Experient ial Learning-Making models | E-
Content-
External
links,
PPT | Creative
drawing, Onlin
Quiz- Google
form | | | 3 | Vegetative propagation, cutting, grafting, budding and layering. | 3 | 1 | K1(
K) | Integrativ e Teaching, Demonstr ative | Experient ial Learning- Demonstr ation of experime nts | Discussio
n Forum-
Google
classroom
, PPT | Online
Assignment,
Observation
Notes | | | 4 | Use of growth regulators for rooting. | 3 | | K4(
An) | Embodied
Learning,
Brain
Storming | Participat
ive
Learning-
Practical | Interactiv
e E-book,
Interactiv
e PPT | Oral
Presentation,
Oral Test | | Ш | 1 | Gardening – types of gardens, ornamental, indoor garden, kitchen garden, terrace garden, vegetable garden for marketing. | 3 | 1 | K2(
U) | Brain
Storming,
Lecture
Method | Participat
ive
learning-
Using
visual
images
and
models | Discussio
n forum-
Mentimet
er, E-
content
MS Word | Quiz
questioning in
the classroom,
Observation
notes | | | 2 | Rockery and artificial ponds. | 2 | | K
3(Ap | Reflective
Thinking,
Demonstr
ative | Participat
ive
learning-
Models | YouTube videos, Interactiv e PPT | Album
preparation,
Oral
presentation | | | 3 | Ornamental garden designing. | 2 | 1 | K1(
K) | Blended
Learning,
Collaborat
ion | Experient ial Learning-Visual images | Interactiv
e E-book,
PPT | Open book test
Just a Minute | | | | | | 7 | | T = | T = . | T = | at: - | |----|----|--|---|---|----------------|---|---|---|--| | | 4 | Garden components
flower beds, borders,
hedges, edges, drives,
paths,
garden
adornments. | 3 | | K4(
An) | Integrativ e Teaching, Lecture Method | Experient ial Learning- Mind map | E-content,
MS
Power
point | Slip test, Group
discussions | | IV | 1 | Packaging of fruits, vegetables. | 3 | 1 | K2(
U) | Co-
operative
Learning,
Lecture
Method | Participat
ive
Learning-
Using
visual
images
and
models | E-
content
MS word,
Whats
app poll | Homework,
CIA,
Assignment | | | 2 | Preservation
techniques drying,
heat treatment, low
temperature storage
and by
chemicals. | 3 | 1 | K
3(Ap
) | Reflective
Thinking,
Brain
Storming,
Lecture
Method | Participat
ive
Learning-
Interactio
n in the
classroom
s | Discussio
n forum-
Mentimet
er, E-
content
MS Word | Quiz- Quizzes
and google
forms | | | 3 | Preparation of wine, vinegar and dairy products. | 4 | | K1(
K) | Simulatio
n based
approach,
Lecture
Method,
Reflective
Thinking | Experient ial Learning- Demonstr ation | YouTube
videos,
Interactiv
e PPT | Online
Assignment,
open book test | | V | 1. | Significance of mushrooms. Cultivation. | 3 | 1 | K2(
U) | Brain
Storming,
Lecture
Method | Participat
ive
Learning-
Panel
discussio
n | Interactiv
e PPT, E-
content
MS
Power
point | Class test, Ope
book test | | | 2. | Types of mushrooms (button mushroom, oyster mushroom). | 3 | | K
3(Ap | Reflective
Thinking,
Simulatio
n based
approach | Participat
ive
Learning-
Recipes | You tube
videos,
GAMMA
PPT | Creative
drawing, Onlin
Quiz- Google
form | | | 3. | Spawn isolation and preparation. | 2 | 1 | K1(
K) | Blended
Learning,
Collaborat
ion | Experient ial Learning- Preparing and demonstr ation | E-
content-
MS Word | Online
Assignment,
Observation
Notes | | | 4. | Value added products
from mushroom –
pickles, candies and
dried mushrooms. | 2 | | K4(
An) | Integrativ
e
Teaching,
Lecture
Method | Participat
ive
Learning-
Preparing
and
demonstr
ative
exhibits | Interactiv
e PPT, E-
content
MS word | Oral
Presentation,
Oral Test | ^{*}Total Teaching hours include 15 hours allotted for Formative and Summative Assessments ## Activities (Em / En /SD): Preparing and demonstrating mushroom, value added products exhibits Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Environment Sustainability** Activities related to Cross Cutting Issues:- Hands on training- Entrepreneurial activity Assignment: types of gardens, ornamental, indoor garden, kitchen garden, terrace garden, vegetable garden for marketing. Seminar Topics: Types of mushrooms (button mushroom, oyster mushroom). Spawn isolation and preparation. #### Part A (1 mark) | 1. | Which organic manure is known for its high nitrogen content? (K2-U, CO-2) | | |----|--|-------------------| | | a. Bone meal b. Cow dung c. oil cakes d. Poultry waste | | | 2. | Panchakaviyam includes which of the following components? (K2-U, CO-2) | | | | a. Milk, curd, ghee, cow urine, and cow dung b. Milk, ghee, honey, water, and compost c. Milk, oil, leaves, water, and compost d. Milk, water, cow urine, leaves, and ghee | | | 3. | The tool commonly used for digging and turning soil in the garden is called a | . (K2-U , | | | CO-3) | (-) | | 4. | The hormone commonly used to stimulate root formation in cuttings is | . (K2-U, CO-4) | | 5. | Rockeries are gardens that primarily feature rocks and alpine plants, whether the statement is Tru | | | | False (K2-U , CO-2) | | | 6. | A kitchen garden is specifically designed to grow
herbs, vegetables, and fruits for household use, whether the statement is True/ False (K2-U, CO-4) | | | 7. | What is the primary purpose of drying fruits and vegetables?. (K2-U, CO-4) | | | 8. | a. To enhance their flavor b. To improve their color c. To reduce their moisture content increase their weight Which chemical is commonly used for the preservation of fruits and vegetables? (K2-U, CO-5) | d. To | | | a. Sodium chloride b. Sodium benzoate c. Calcium carbonate d. Potassium chloride | ride | #### Part B (6 marks) - 1. Compare and contrast cow dung and poultry waste as organic manures in terms of their nutrient content and application (K1-R, CO-1) - 2. Interpret the composition and NPK content of bone meal and its use in agriculture. (K3-Ap, CO-1) - 3. Assessing five common garden tools and their primary uses in gardening. (K4-An, CO-2) - 4. Describe the concept of a terrace garden and its advantages? (K1-R, CO-3) - 5. Role of acetic acid bacteria in the production of vinegar. justify (K4-An, CO-4) - 6. Explain the characteristics and uses of button mushrooms. (K1-R, CO-5) - 7. Analyze the spawn preparation for mushroom cultivation. (K4-An, CO-5) ## Part C (12 marks) - 1. Summarize the steps involved in the preparation of Panchakaviyam and its benefits in organic farming. (K3-Ap, CO-1) - 2. Discuss the process of vermicompost preparation and the benefits of vermicomposting over traditional composting methods. (K1-R, CO-1) - 3. Compare and contrast the different methods of vegetative propagation, including cuttings, grafting, budding, and layering. (K3-Ap, CO-2) - 4. Analyze the economic and environmental impacts of vegetable gardens for marketing purposes. (K4-An, CO-3) - 5. Determine the process of making wine from grapes and the biochemical changes that occur during fermentation. (**K2-U, CO-4**) - 6. Distinguish the different packaging materials used for fruits and vegetables and their impact on shelf life and quality? (K3-Ap, CO-4) - 7. Compare and contrast button mushrooms and oyster mushrooms in terms of their cultivation requirements and market potential. (**K3-Ap, C0-5**) Head of the Department Dr. Sr. P. Leema Rose Course Instructor Dr. S.Kala Vetha Kumari Department : Botany Class : II M.Sc. Botany Title of the Course :SKILL ENHANCEMENT COURSE II: AGRICULTURE AND FOOD MICROBIOLOGY Semester : III Course Code : BP233SE1 | Course Code | L | Т | P | s | S Credits Inst Hours Total | | | | Marks | | |-------------|---|---|---|---|----------------------------|---|-------|-----|----------|-------| | course coue | | | | | | | Hours | CIA | External | Total | | BP233SE1 | 3 | - | - | - | | 3 | 45 | 25 | 75 | 100 | # **Learning Objectives:** - 1. To provide comprehensive knowledge about plant microbe interactions. - 2. To provide basic understanding about factors affecting growth of microbes ## **Course Outcomes** | COs | Upon completion of this course, students will be able to: | PSO addressed | CL | |------|---|---------------|---------| | CO-1 | Recognize the general characteristics of microbes and factors affecting its growth | PSO-1 | K1 &K3 | | CO-2 | Explain the significance of microbes in increasing soil fertility | PSO-2 | K3 & K4 | | CO-3 | Elucidate concepts of microbial interactions with plant and food. | PSO-3 | K3 & K5 | | CO-4 | Analyze the impact of harmful microbes in agriculture and food Industry. | PSO-3 | K2 | | CO-5 | Determine and appreciate the role of microbes in food preservation and as biocontrol. | PSO-3 | K1 & K3 | # Teaching plan # **Total Contact hours*: 60 (Including lectures, assignments and tests)** | Unit | Modul
e | Торіс | Teachi
ng
Hours | Asses
sment
Hours | Cogniti
ve level | Pedagogy | Student
Centric
Method | E-
Resources | Assess
ment/
Evalu
ation
Metho
ds | |------|------------|---|-----------------------|-------------------------|---------------------|---|---|--|--| | I | | 1 | | | • | | • | | | | | 1. | Role of
symbiotic and
free-living
bacteria and
cyanobacteria
in agriculture. | 3 | 1 | K2(U) | Brain
Storming,
Simulation
based
approach | Participat
ive
Learning
- Team
Teaching | Interactive
PPT, E-
content
MS Power
point | MCQ,
Quiz,
Open
book
test | | | | | | | | | ration of experime | | | |-----|----|--|---|---|--------|--|---|--|---| | | 2. | Mycorrhiza, Plant Growth Promoting Micro- organism (PGPM) and | 2 | | K1(R) | Cooperative
learning-
Group
Discussion,
Reflective
Thinking | nts Participat ive Learning Demonst ration, Panel discussio n | You tube
videos,
GAMMA
PPT | Online
Quiz-
Googl
e
Forms,
Just a
Minute | | | 3. | Phosphate
Solubilizing
Micro-
organism
(PSM). | 2 | | K3(Ap) | Reflective
Thinking,
Blended
Learning | Collabor
ative
learning-
Mind
mapping, | E-content-
MS Word,
Interactive
PPT | Open
book
Test,
MCQ,
Online
Asing
ment | | II | 1. | Biocontrol of plant pathogens, pests and weeds. | 2 | 1 | K2(U) | Inquiry based
approach,
Brain
Storming | Experient ial Learning - Role play, Mind map | You tube
videos, E-
content-
MS Word | Class
test,
Open
book
test | | | 2. | Restoration of
waste and
degraded
lands. | 2 | | K1(R) | Simulation
based
approach,
Lecture
Method | Experient ial Learning - Making models | E-
Content-
External
links, PPT | Creati ve drawin g, Online Quiz- Googl e form | | | 3 | Biofertilizers:
Types,
technology for
their
production and
application. | 2 | 1 | K3(Ap) | Integrative
Teaching,
Demonstrativ
e | Experient ial Learning - Demonst ration of experime nts | Discussion
Forum-
Google
classroom,
PPT | Online
Assign
ment,
Observ
ation
Notes | | | 4 | Vermi-
compost. | 1 | | K4(An) | Embodied
Learning,
Brain
Storming | Participat
ive
Learning
-
Practical | Interactive
E-book,
Interactive
PPT | Oral
Presen
tation,
Oral
Test | | III | 1 | Intrinsic and extrinsic factors influencing growth of microorganism s in food. | 3 | 1 | K2(U) | Brain
Storming,
Lecture
Method | Participat
ive
learning-
Group
discussio
n | Discussion
forum-
Mentimete
r, E-
content
MS Word | Quiz
questio
ning in
the
classro
om,
Observ
ation
notes | | | 2 | Microbes as
source of food:
Mushrooms | 2 | | K1(R) | Reflective
Thinking,
Demonstrativ | Participat
ive
learning-
Demonst
ration of | YouTube
videos,
Interactive
PPT | Album
prepar
ation,
Oral | | | | | | | | | Experime nts | | present
ation | |----|----|--|---|---|--------|--|---|--|---| | | 3 | Single cell protein. | 2 | | K3(Ap) | Blended
Learning,
Collaboration | Experient ial Learning - Individua 1 project | Interactive
E-book,
PPT | Open
book
test,
Just a
Minute | | IV | 1 | Microbial
spoilage of
food and food
products:
Cereals. | 3 | 1 | K2(U) | Co-operative
Learning,
Lecture
Method | Participat
ive
Learning
- Using
visual
images
and
models | E- content
MS word,
Whats app
poll | Home
work,
CIA,
Assign
ment | | | 2 | Vegetables,
prickles, fish
and dairy
products. Food
poisoning and
food
intoxication. | 2 | | K1(R) | Reflective
Thinking,
Brain
Storming,
Lecture
Method | Participat ive Learning - Interactio n in the classroo ms | Discussion
forum-
Mentimete
r, E-
content
MS Word | Quiz-
Quizze
s and
google
forms | | | 3 | Food preservation processes. Microbes and fermented foods: Butter.Cheese and bakery products. | 2 | | K3(Ap) | Simulation
based
approach,
Lecture
Method,
Reflective
Thinking | Experient ial Learning - Demonst ration | YouTube
videos,
Interactive
PPT | Online
Assign
ment,
open
book
test | | V | 1. | PREDICTIVE
METHODS:
Food
quality control
Act and
Regulations, | 2 | 1 | K2(U) | Brain
Storming,
Lecture
Method | Participat
ive
Learning
- Role
play,
Mind
map | Interactive
PPT, E-
content
MS Power
point | Class
test,
Open
book
test | | | 2. | Food
safety, trade
regulation of
Food materials. | 2 | 1 | K1(R) | Reflective
Thinking,
Simulation
based
approach | Participat
ive
Learning
-
Describin
g visual
images | You tube
videos,
GAMMA
PPT | Creati ve drawin g, Online Quiz- Googl e form | | | 3. | Instrumentatio n in food analysis. | 3 | | K3(Ap) | Blended
Learning,
Collaboration | Experient ial Learning - Video making | E-content-
MS Word | Online
Assign
ment,
Observ
ation
Notes | Course Focussing on
Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Preparing and demonstrating food exhibits Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - **Environment Sustainability** Assignment: Microbial spoilage of food and food products: Cereals. Seminar Topics: Food poisoning and food intoxication. #### Part A (1 mark) - 1. What is the role of symbiotic bacteria in agriculture? (K1-R, CO-1) - a) Fixation of atmospheric nitrogen - b) Decomposition of organic matter c) Pest control - d) Soil aeration - 2. Which of the following is not a benefit of mycorrhizal associations in agriculture?(K1-R, CO-2) - b) Improved nutrient uptake b) Enhanced tolerance to drought - c) Prevention of soil erosion d) Increased resistance to pathogens - 3. Plant Growth Promoting Microorganisms (PGPM) primarily enhance plant growth by: (K2-U, CO-2) - c) Providing mechanical support to roots b) Suppressing weed growth - c) Enhancing nutrient availability - d) Increasing water content in soil - 4. Phosphate Solubilizing Microorganisms (PSM) play a crucial role in agriculture by: (K1-R, CO-3) - d) Increasing soil pH - b) Converting organic matter into inorganic phosphorus - c) Facilitating the uptake of phosphorus by plants - d) Inhibiting plant growth - 5. Cyanobacteria contribute to agriculture by: (K1-R, CO-4) - e) Producing antibiotics for plant protection b) Fixing atmospheric carbon dioxide - c) Enhancing soil fertility through nitrogen fixation d) Providing natural colors for crop protection #### Part B (6 marks) - 1. Discuss the role of mycorrhiza in agriculture and how it enhances plant growth. (K1-R, CO-1) - 2. Explain the technology used for the production and application of biofertilizers.(K1-R, CO-2) - 3. Describe the intrinsic and extrinsic factors influencing the growth of microorganisms in food. (K2-U, CO-2) - 4. How do microbes contribute to the spoilage of dairy products?(K3-Ap, CO-3) - 5. What are the different trade regulations of food materials?(K2-U, CO-4) Part C (12 marks) Discuss the significance of plant growth-promoting microorganisms (PGPM) in agriculture, highlighting their mechanisms of action and potential benefits for crop production.(K3-Ap, CO-1) - 1. Explain the concept of biocontrol in agriculture, focusing on its role in managing plant pathogens, pests, and weeds. Provide examples of biocontrol agents and their modes of action.(**K2-U, CO-2**) - 2. Evaluate the importance of vermicompost in sustainable agriculture, detailing its production process, benefits for soil health, and potential challenges. (K5-E, CO-3) - 3. Compare and contrast the microbial spoilage of cereals, vegetables, fruits, fish, and dairy products, discussing common spoilage microorganisms and their effects on food quality.(K3-Ap, CO-3) - 4. Analyze the Instrumentation in food analysis.(K4-An, CO-4) Head of the Department Course Instructor